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Center for Computer Research in Music and 
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Stanford University 
Stanford, California 94305 

Introduction 

In 1960, an efficient computational model for vi- 
brating strings, based on physical resonating, was 
proposed by McIntyre and Woodhouse (1960). This 
model plays a crucial role in their recent work on 
bowed strings (McIntyre, Schumacher, and Wood- 
house 1981; 1983), and methods for calibrating the 
model to recorded data have been developed (Smith 
1983). 

Independently, in 1978, Alex Strong devised an 
efficient special case of the McIntyre-Woodhouse 
string model that produces remarkably rich and re- 
alistic timbres despite its simplicity (Karplus and 
Strong 1983). Since then, Strong and Kevin Karplus 
have explored several variations and refinements of 
the algorithm, with an emphasis on small-system 
implementations. We have found that the Karplus- 
Strong algorithm can be used with equally impres- 
sive results on fast, high-power equipment. The 
availability of multiplies, for example, allows sev- 
eral modifications and extensions that increase its 
usefulness and flexibility. These extensions are de- 
scribed in this paper. The developments were moti- 
vated by musical needs that arose during the 
composition of May All Your Children Be Acrobats 
(1981) for computer-generated tape, eight guitars, 
and voice and Silicon Valley Breakdown (1982) for 
four-channel, computer-generated tape, both writ- 
ten by David Jaffe. Our theoretical approach and 
the extensions based on it have also been applied to 
the McIntyre-Woodhouse algorithm (Smith 1983). 

David A. Jaffe is also affiliated with the Music Department at 
Stanford University, and Julius O. Smith is also affiliated with 
the Electrical Engineering Department there. 

Computer Music Journal, Vol. 7, No. 2, 
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Extensions of the 
Karplus-Strong 
Plucked-String 
Algorithm 

The String-Simulation Algorithm 

The Karplus-Strong plucked-string algorithm is pre- 
sented in this issue of Computer Music Journal. 
From our point of view, the algorithm consists of 
a high-order digital filter, which represents the 
string; and a short noise burst, which represents 
the "pluck." The digital filter is given by the dif- 
ference equation 

(1) Yn = Yn-N + 
yn-(N+1) Yn = Xn + Yn-N + YN+ 

2 

where x. is the input signal amplitude at sample n, 
y, is the output amplitude at sample n, and N is 
the (approximate) desired pitch period of the note in 
samples. The noise burst is defined by 

Au, n = 0, 1, 2,...,N- 1 xn = 0, n N, 

where A is the desired amplitude, and un, [-1,1] is 
the output of a random-number generator. The out- 
put yn is taken beginning at time n = N in our 
implementation. 

Analysis of the String Simulator 

Before proceeding to practical extensions of the al- 
gorithm, we will describe the theory on which 
many of them are based. Various concepts from 
digital filter theory are employed. For a tutorial in- 
troduction to digital filter theory, see the works by 
Smith (1982b) and Steiglitz (1974). 

The input-output relation of Eq. (1) may be ex- 

1. In some situations, the sound more closely resembles a string 
struck with a hammer or mallet than one plucked with a pick, 
but we will always use the term pluck when referring to the 
excitation. 
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Fig. 1. Block diagram for 
the basic string simulator. 

pressed differently by means of delay-operator nota- 
tion. We define the unit-sample delay operator d by 
the relation 

dkx A- Xn-k, 

where x, is an arbitrary signal, and k is an integer. 
(The symbol A means "is defined as.") Thus, multi- 
plying a signal by dk delays the signal in time by k 
samples. In these terms, Eq. (1) becomes 

yn = dNy + dN+lyn 

=x+n L+ d 2 

Solving for yn yields 

(2) Xn1 

Yn XI+d' 1- dN 2 

We can convert linear delay-operator equations 
immediately to z-transform equations by replacing 
each time signal with its z-transform, and replacing 
d with z-'. It is customary to denote a time signal 
in lowercase letters (e.g., x) and the corresponding 
z-transform in uppercase letters (e.g., X(z)). The 
transfer function of a (linear, time-invariant) digital 
filter is the z-transform of the output signal divided 
by the z-transform of the input. The transfer func- 
tion of the string simulator is then found to be 

Y(z) _ 1 
H(Z) A Y = X H X(z)x 1 l+z - 

2 

1 
1 - Ha(z)Hb(z)' 

where 

1 + z- 
Ha(z) Q 2 2 

Hb(z) z-N 

This form of the description is shown in Fig. 1. The 
feedback loop consists of a length N delay line 
Hb(z) in series with a two-point average Ha(z). Cor- 
responding to this breakdown of the string simula- 

tor is the following set of difference equations: 
Vn = Yn-N 

V= n + Vn- 
2 

yn = xn + Wn 

The frequency response of a digital filter is de- 
fined as the transfer function evaluated at z = 
e's = cos(oT,) + j sin(o Ts), where T, is the sam- 
pling period in seconds (Ts is the inverse of the sam- 
pling rate fj, o = 27rf is radian frequency, f is 
frequency in Hz, and j = \-7. The frequency re- 
sponse of the string simulator is then 

1 
H(e,Ts) = 

He ') 1 - Ha eiw sHb(e s)' 

where 
1 + e- 'T T 

H|(e 2Ts) 
= e e-' 2cos(coT,/2) 

= e-fTscos(rfTs) 

Hb(es s ) = e- iN = e- if.NT 

In this paper it is necessary to consider the am- 
plitude response and phase delay of the feedback fil- 
ters separately. The amplitude response is defined 
as the magnitude of the frequency response, and 
it gives the gain of the filter as a function of fre- 
quency. The phase delay is defined as minus the 
complex angle of the frequency response divided 
by radian frequency, and it gives the time delay 
(in seconds) experienced by a sinusoid at each 
frequency. 

The amplitude response of each component filter 
is given by 
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Ga(f) A IHa(eiTs)I = cos(oT,/2)l = Icos(T7fT)l 
Gb(f) A IHblee ws)I 1. 

Thus the delay line Hb is lossless, and the two- 
point average Ha exhibits a gain that decreases with 
frequency according to the first quadrant of a co- 
sine. We will assume hereafter that all frequencies 
are restricted to the Nyquist limit, that is, If l 
fs/2. In this range, we have (cos(i7fTj) = cos(1rfTs). 

It is convenient to define phase delay in units 
consisting of samples rather than seconds. The 
phase delays of Ha and Hb in samples are given by 

Pa(f) - / H(e'2) =1 "- ~oT, 2' 

Pb(f) A - / Hb(e'S) = N. 
PfT, 

(Lz denotes the complex angle of z). The two-point 
average has a phase delay equal to half a sample, 
and the delay line has a phase delay equal to its 
length. 

Since the total loop consists of Ha and Hb in se- 
ries, the loop gain and effective loop length are 

loop gain = G(f) Gb(f) = cos(rfT,), 
and 

loop length = Pa(f) + Pb(f) = N + 1/2 (samples) 

for each sinusoidal frequency f Hz. 
In synthesizing a single plucked-string note, we 

feed in N samples of white noise at amplitude A 
and listen to the output immediately afterward. It 
is equivalent to initialize the delay line Hb with 
sealed random numbers at time 0 and employ no 
input signal. Since the two-point average Ha is con- 
stantly changing the contents of the loop, the out- 
put signal is not periodic. It is close to periodic, 
however, and we use the term period in this loose 
sense. Each period of the synthetic string sound 
corresponds to the contents of the delay line at a 
particular time, and each period equals a somewhat 
lowpass version of the previous period. More pre- 
cisely, a running two-point average of the samples 
comprising one period gives the next period in the 
output waveform. Since the effective loop length is 
N + 1/2 samples, the period is best defined to be 

NTs + Ts/2 sec. Experience shows this to corre- 
spond well with perceived pitch. 

Decay of "Harmonics" 
Since the signal is only quasi-periodic, it does not 
consist of discrete sinusoids. Essentially, we have 
many narrow "bands" of energy decaying to zero at 
different rates. When these energy bands are cen- 
tered at frequencies that are an integer multiple of a 
lowest frequency, they will be referred to as har- 
monics. When the frequency components are not 
necessarily uniformly spaced, the term partial will 
be used to emphasize the possibility of inharmo- 
nicity. Consider, then, a partial at frequency f Hz 
circulating in the loop. On each pass through the 
loop, it suffers an attenuation equal to the loop- 
amplitude response, Ga(f)Gb(f) = cos(IrfTs); that is, 

one period's attenuation = cos(rfTs). 
Since the round-trip time in the loop equals N + 
1/2 samples, the number of trips through the loop 
after n samples (nTs sec) is equal to n/(N + 1/2) = 
tfS/(N + 1/2). Thus the attenuation factor at time 
t = nT, is given by 

tf5 
af(t) A [cos(7rfTs)] N + 2. 

For example, an initial partial amplitude A at time 
0 becomes amplitude Aaf(t) at time t seconds, 
where f is the frequency of the partial. 

The time constant of an exponential decay is tra- 
ditionally defined as the time when the amplitude 
has decayed to l/e - 0.37 times its initial value. 
The time constant at frequency f is found by equat- 
ing Eq. (3) to e-'/f and solving for rf, which gives 

Zs 
-t ( ) Tf = = - 

ncos(rfT (seconds). (4) In af(t) In cos(rTrfT) 
For audio, it is normally more useful to define the 
time constant of decay as the time it takes to decay 
-60 db, or to 0.001 times the initial value. In this 
case, we equate Eq. (3) to 0.001 and solve for t. This 
value of t is often called t6o. Conversion from f to 
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t60(/) is accomplished by 
t6o(f) = ln(1000),rf 6.91 f. 

For example, if a sinusoid at frequency f Hz has 
amplitude A at time 0, then at time t,o(f) it has am- 
plitude Aaf(t6o (f)) = A/1000, or it is 60 db below its 
starting level. 

The above analysis describes the attenuation due 
to "propagation" around the loop. It does not, how- 
ever, incorporate the fact that sinusoids that do 
not "fit" in the loop are quickly destroyed by self- 
interference. This situation is analogous to making 
an actual string vibrate. Any signal may be "fed 
into" the string, but after the input ceases, the re- 
maining energy quickly assumes a quasi-periodic 
nature. Thus, even though the loop is initialized 
with random numbers, after a very short time the 
primary frequencies present in the loop are those 
that have an integral number of periods in N + 1/2 
samples. These frequencies are all multiples of the 
frequency whose period exactly matches the loop 
length N + 1/2. This lowest frequency provides the 
fundamental, or pitch frequency, of the note: 

A (6)fs 

2 12 (N+2) T~ N4+- 

Setting f to the harmonic series beginning with f,, 

f, = la, E k fs k = 2, ... N/2, (7) 
N+ 2 2 

gives the decay factor at time t for the kth harmonic 
to be 

ak(t) = [costlrfkTs)]ft. (8) 

Similarly, the time contrast per harmonic is 
given by 

_-t 1 
k In ak(t) f In cos(rfkT,) (seconds. (9 

Figure 2 shows the spectral evaluation during the 
first 16 periods of a note having a period of 128 
samples. A 128 length Fast Fourier Transform (FFT) 
was computed every other period. Each curve in the 
figure is interpreted as the envelope of the har- 

monic amplitudes, since a straight line is drawn 
from one harmonic amplitude to the next. 

In certain extensions to the algorithm, HA is 
other than a two-point average. In such a case, the 
attenuation factor of the kth harmonic after t sec- 
onds is approximately 

tf, 

ak(t) = G,(fk )N + Plfk), (10) 

where we require Ga(fl) 1 for stability. The phase 
delay Pa(fk) of Ha may be used to create inharmonic 
spectra (Smith 1983). The spectrum is harmonic 
only when Pa,fk) is the same at all harmonic 
frequencies fk. 

Similarly, when Ha is more general, the time con- 
stant of decay for each harmonic becomes 

T 
N + P,(fk) t 

seconds. Tk = - f In G(2rfkT) 
econ (11) 

Having provided an analytic vocabulary, we now 
proceed to a detailed examination of our additions 
to the Karplus-Strong algorithm. 

Tuning 
The fact that the delay-line length N must be an 
integer causes tuning problems. Since the funda- 
mental frequency is f, = f/(N + 1/2), the allowed 
pitches are quantized, especially at high frequency. 
For large values of N (low pitches), the difference 
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during the first 16 periods. 
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Fig. 3. Desired pitch versus 
resulting pitch for a 50- 
KHz sampling rate. 
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between the pitch at N and N + 1 is very slight. 
However, for high pitches, N and N + 1 yield very 
different pitches and tuning becomes crude. Figure 
3 shows the distortion in frequency for the sam- 
pling rate 50 KHz. For lower sampling rates, the 
curve is identical in form, and the distortion occurs 
at proportionately lower frequencies. 

The key to a solution for this problem lies in the 
expression for loop length in terms of phase delay. 
The fundamental frequency is given by 

_ = fs 
f N+Pa(fl)' 

where Pa(f) = 1/2 when the two-point average is 
used for Ha. To make up the difference between f 
and the desired frequency, we need to introduce 
into the feedback loop a filter that can contribute a 
small delay without altering the loop gain. The fil- 
ter we introduce has the difference equation 

Yn = CXn + Xn-1 - CYn- (12) 
and transfer function 

H,(z)A 1 + Cz-' 
where C is the only coefficient to be set. For sta- 
bility, we must have ICI < 1. It can be shown that 
when the input x, is bounded by 1, the output is 
bounded by 21CI + 1. The transfer function of the 

whole string is now 

H(z) A ) 1 - Ha(z)Hb(z)Hc(z) 

The filter H, is a first-order allpass filter, and as 
such it has a constant amplitude response. Indeed, 
the amplitude response is simply 

Gc(f) - IHc(e s)l= 1 + Ce -7T| 1 

The use of an allpass filter ensures that no modi- 
fication of the decay rate will take place. The loop 
gain is G,(f)Gb(f)G,(f) = cos(rTfTs) as before. 

We will select the phase delay of H, so as to tune 
fl to the precise desired frequency. This requires 
only the ability to select phase delays between 0 
and T, sec, or one sample's worth. 

The phase delay of the first-order allpass H, is 
given by 

PC(f) A _ /Hc (e's) 
coTT 

-1 C + e-'"T 
coTs 1 + Ce-'T 

L(1 + Ce-"T) _ (C + e-'"T) 
coTs coT 

= 1tan(- C sinlT) 

oT tanI -sin(cT) 
oT,s tn C + cos( oTj ) (13) 

When the arguments to the arc tangent above have 
magnitude less than unity, we can use the power- 
series expansion (Abramowitz and Stegun 1966), 

X3 XS X7 tan-'(x) = x -- + + ., Ix< 1. 

Thus we can approximate the low-frequency phase 
delay by 

Pcf ) = sin(oT,) C sin(co T 
cT,()C + cos(oT,)) oT,(1 + C cos(oTj)) 

1 C 1-C 
C+ 1 +C 1+C' (14) 

A plot of the exact phase delay is given in Fig. 4 for 
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Fig. 4. Phase delay for the 
fine-tuning allpass filter 
H,(z) = (C + z-')/ 
(1 +C z-). 

2- 

c : 

cn - ' 1 

C 

n 

0 Frequency F,/2 

17 values of C equally spaced between -0.999 and 
0.999. Note that delays between 0 and 1 sample can 
be provided somewhat uniformly across the fre- 
quency axis. A delay of 0 samples corresponds to 
C = 1, where the pole and zero of Hc(z) cancel to 
give Hc(z) 1. However, pole-zero cancellation on 
the unit circle is not a good thing in practice, since 
round-off errors may yield an unstable filter. There- 
fore, it is preferable to shift the range of one-sample 
delay control to the region s < Pc < (1 + e) for 
some small nonnegative e (0 < < 1). It is best not 
to shift very far, since the phase-delay curves are 
less flat in the region beyond one sample's delay. 

Note that the delay curves below the one-sample 
level in Fig. 4 correspond to slightly flattened up- 
per partials, while the delay curves above the one- 
sample level correspond to slightly sharpened upper 
partials. The timbre change due to slight systemat- 
ic shifting of the upper partials, of an amount less 
than one sample period, was found to be hardly no- 
ticeable. It may even be desirable as a source of sub- 
tle timbral variation. In any case, it is important to 
get the perceived pitch right. 

To tune the instrument precisely to a desired 
fundamental frequency f, let P1 equal fs/f, the real 
value for the period of the first partial, in samples, 
which would give perfect tuning. Then we desire 
N + Pa(fi) + P,(fl) = P. The integer buffer length N 

and the delay Pc(fL) required from the allpass filter 
become 

N A Floor(P, - P(f,) - ) (15) 

Pc(fl) A Pi - N - P,(f), 
where s > 0 is the offset that shifts Pc(fl) into the 
range [e, 1 +e], and Pa(f,) is the delay in samples due 
to the filter Ha. In the simple case where Ha is a 
two-point average, Pa(f,) = 1/2. 

We next solve for the filter coefficient in Eq. (13) 
as a function of Pc(f,). Taking the tangent of both 
sides, and using an identity for the tangent of a 
difference leads to the quadratic equation in C, 

C2 sin(co1TJP,(f,) + cw,Tj + 2C sin(co,TPc(fA)) + 
sin(co,TP,(fl) - coTj) = 0, 

where co A_ 27rf. The solution is found, after some 
manipulation (Mont-Reynaud 1982), to be 

-sin(ol TsP(fL)) + sin(olTs) 
sin(wol TsP(f ) + coTj ) 

We have introduced an extra root by producing a 
quadratic equation. The previous approximation 
Eq. (14) indicates that the + sign should be taken. 
Therefore, the final solution is 

- sin(c, Tj - sin(o, TsP,c(f)) 
sin(cl TsPc(fl) + c Ts) 

-sin( 
co T - o, 

TsPc(fl) 
= 
i( TT,+co, TsPff, 

(16) 

which can be approximated, at low frequencies, by 
1 - Pc(f,) 
i + Pc(AM) (17) 

Although this technique provides a precise funda- 
mental frequency, it does not guarantee an in-tune 
percept, since the perceived pitch does not always 
coincide with the fundamental frequency. An ad- 
ditional mapping onto a perceptual tuning dimen- 
sion may be needed for the very high notes. In our 
case, it was found that tuning the octaves slightly 
stretched, as is done in piano tuning, gives a more 
satisfying in-tune percept. 
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Decay-time Alteration 

The basic algorithm naturally results in a shorter 
decay time for high pitches than for low pitches, 
reflecting the behavior of real strings. This is due 
to two effects. First, higher frequencies are more 
attenuated by the two-point average Ha; second, 
higher pitch means more trips through the atten- 
uating loop in a given time. This may be seen in 
Eq. (3). 

Unfortunately, the range of decay times between 
the high and low pitches is too extreme. The high- 
pitched notes die away so fast that only a click is 
perceived, while the low-pitched notes last for an 
unnaturally long time. In addition, the decay time 
of real strings varies with many factors such as ten- 
sion, length, thickness, and material. Consequently, 
we have found it useful to add a means for altering 
the note duration. The ability to control decay time 
is essential for a realistic simulation as well as for 
musical flexibility. 

On systems that have separate control of the 
sampling rate of each voice, sampling-rate change 
can be used to control decay time. On other sys- 
tems, however, it is necessary to use other methods 
to alter decay time. 

Decay Shortening 
To shorten the decay time, a loss factor p can be in- 
troduced in the feedback loop. With the loss factor, 
the difference Eq. (1) for the string becomes 

Yn = X -N + Yn-(N+)18 
y,=fx,,+ p (18) 

The amplitude envelope of a sinusoid at frequency 
f, previously given by Eq. (8), is now proportional to 

a,(t, p) = |p cos(TrfTs)jfl = IPIM'taf(t). 
Thus all partials are affected equally: the relative 
decay rates are unchanged. 

Note that p cannot be used to lengthen the decay 
time, since the amplitude at 0 Hz would increase 
exponentially. In general, we must have Ipl - 1 if 
the string is to be stable. Thus p is used to shorten 
the low-pitched notes to make them more compa- 

rable in duration with notes from a real string. With 
the loss factor operative, the decay-time constant 
for the fundamental frequency becomes 

1 
r(p) = - f, In lp cos(rTf, Tj)I ' (19) 

Decay shortening produces a damped version of the 
algorithm, analogous to substitution of a soft mate- 
rial for the bridge of a string instrument. 

Decay Stretching 
To stretch the decay, the feedback average (Ha) can 
be changed to a two-point weighted average. This 
reduces the amount of loss at high frequencies. 
Thus, we replace H(z}) by 

H,(z, S) = (1 - S) + Sz-, (20) 
where S, the stretching factor, is between 0 and 1. 
The gain of this filter is 

G,(f, S) = (1 - S) + Se-' it 
= V ((1 - S) + S cos oTJ)2 + (S sin(w)T,))2 
= V (1 - S)2 + S2 + 2S(1 - S) cos wTr 

(21) 
With S = 1/2, Ha(z, S) reduces to the previous case 
Ha(z). For stability of the overall string, we must have 
0 < S < 1. If S = 0 or 1, the frequency-dependent 
term disappears, and the gain response is unity for 
all f; in this case, the initial white-noise burst cir- 
culates forever in the loop, producing harmonics 
that never decay. At intermediate values, 0 < S < 1, 
the effective note duration (t60) is finite, and it is 
minimum for S = 1/2. The amplitude trajectory 
and the decay-time constant for each partial can be 
obtained by substituting Eq. (21) into Eqs. (10) and 
(11), respectively. 

For the greatest control, both the uniform-loss 
method and the weighted two-point-average method 
may be used for decay-time alteration. The result- 
ing decay time is then a function of loss factor p 
and stretch factor S. Karplus and Strong (1983) de- 
scribe a method of decay stretching that uses no 
multiplies. 
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Fig. 5. Phase delay for the 
decay-stretching, one-zero 
filter Ha(z, S) = (1 - S) + 
S z-'. 

-s /4 - / 

0 

0 Frequency F,/2 

Effect of Decay Stretching on Tuning 

Changing S changes the effective loop length as a 
function of frequency, since it changes the phase 
delay of the overall loop. We must therefore com- 
pute Pa(f,) for use in Eq. (15) when fine tuning with 
the allpass filter H,. The phase delay of the weighted 
two-point average is given by 

Pa(f, S) - ?Ha(e'TS, S) 
coT, 

((L - S) + Se-' T) 
coT, 

_ tan-' -Ssin(oT) ,2 - 
, 

tan- (1 - S)+ S cos(ouT) ) (22) 

and for low frequencies, relative to the sampling 
rate, we may use the approximation 

P(f, S) T -S sin(oTs) 
Pa( f T,({1 - S) + ScoTs cos()oT,) 

- S, O < S 1. 

For S = 1/2, we have the basic string algorithm, 
and the phase delay of Ha is 1/2, as given by the 
above approximation. For other values of S the 
approximation is always precise at f = 0. Figure 5 
shows the true phase-delay curves of H,(z, S) as S 
is stepped uniformly through 17 values from 0 to 1. 

Note that for S > 0 the phase delay is quite flat 
over most of the frequency axis. Another point 
of interest is that since Ga(z, S) = Ga(z, 1 - S), 
we may choose the case that yields the best phase 
delay curve for the fine-tuning allpass H,. 

Since the tuning calculation needs to be done 
only once per note, the precise form of Eq. (22) 
can be used for each new frequency without much 
computational expense. 

Dynamics 
The loudness of the signal output by the algorithm 
is a function of the amplitude of the input noise 
burst. However, this is an unsatisfactory control in 
simulating the timbral effect of dynamic level as it 
occurs in the case of a real string instrument. The 
effect of varying initial amplitude gives the impres- 
sion of a change more in the distance between the 
listener and the apparent source than in dynamics. 
Since strings plucked hard have more energy in the 
higher partials than strings plucked lightly (due to 
nonlinearities becoming important), the dynamic 
simulation is based on modeling this difference in 
spectral balance. We therefore change the effective 
spectral bandwidth of a note to modulate its appar- 
ent intensity. 

The bandwidth is controlled by means of a one- 
pole, lowpass filter applied to the initial noise burst 
(before it is fed into the string). This filter will be 
referred to as the dynamics filter. The difference 
equation of the dynamics filter is 

yn = (1 - R)xn + Ryn-, 
and its transfer function is 

1-R 
Hd(z) = 1 - Rz-' (23) 

where R is a real number between 0 and 1, com- 
puted as a function of fundamental frequency fl and 
the desired dynamic level L. When a series of notes 
at pitch f, is played while R is moved gradually to- 
ward 1, a diminuendo is approximated in terms of 
both decreasing loudness and spectral bandwidth 
reduction. 

We define the dynamic level L as a bandwidth be- 
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Fig. 6. Frequency response 
of H(z) = (1 - R) 
(1 - R z-l) computed at 
dynamic level L = 100 for 
six values of f,. 

tween 0 and f/2. If L is small, the spectrum is more 
lowpass filtered, corresponding to a softer dynamic 
level. Conversely, large L gives a bright spectrum 
corresponding to louder notes. It is not sufficient to 
use a fixed lowpass filter for all pitches, since low- 
pitched notes would then be louder than high-pitched 
notes. Rather, for a given dynamic level, R must be 
changed with pitch to yield a uniform perceived 
loudness. While this is a difficult problem in gen- 
eral, a good approximation is obtained by varying R 
so that the amplitude of the fundamental frequency 
is constant. 

It remains to be shown how R is computed for a 
given pitch fl and dynamic level L. The main steps 
are as follows. First, a one-pole, lowpass filter is de- 
signed having bandwidth L. Second, the gain of this 
filter at a "middle" frequency is computed. Third, 
the dynamics filter is computed as a one-pole, low- 
pass filter having this gain at the desired fundamen- 
tal f,. The remainder of this section gives the equa- 
tions needed for these steps. 

The reference frequency fm is chosen as the loga- 
rithmic middle (geometric mean) of the range to 
be used (a function of the particular musical con- 
text and the sampling frequency): 

fm= e(l/2)(log(f)+ log(fl)) = /-f 

where f, is the upper pitch limit (< f/2), and fi is 
the lower pitch limit. 

The one-pole lowpass filter having bandwidth L 
is given by 

HL(Z) A I - 
RL L 1 - RZ-' 

where 

RL A e- LTs. 

The substitution RL = e- LT is a somewhat stan- 
dard approximate formula for mapping bandwidth 
to pole radius. 

The gain of the lowpass filter HL at the reference 
frequency is defined as 

GL A IHL(e"7sfms) 

1 - RL 
11 - RLe-'21rmTs' 

o -25t1 -- 25 

-50 = 100 Hz 

50123I .... 
0 1 2 3 4 
fi fm Frequency (KHz) f. 

Now, for any desired fundamental frequency fL, R 
is computed so as to provide gain Gd(fl) = GL. In other 
words, all fundamental frequencies are made to have 
the same amplitude. The value of R is found by 
solving 

GL = R l - R 
GL 

|I1 - Re-i2fI Ts 

Squaring both sides of this equation and solving the 
resulting quadratic polynomial in R yield 

R 1 - GL cos(2rfr Ts) R= 1 - GL 

V' 1 - G2 COS2( rTf, Ts) + 2GL sinr T rf V T1 L ) 
1- G- 

We use whichever value is < 1 in magnitude to en- 
sure stability. 

A family of frequency-response curves for Hd is 
shown in Fig. 6 for six fundamental frequencies in 
octave steps from f, = 100 Hz to fl = 3,200 Hz. The 
dynamic level in each case is L = 100 Hz. A verti- 
cal line is drawn to each curve at the fundamental 
frequency to which it applies. The reference fre- 
quency fm is set to 282.84 Hz (the geometric mean 
of f, = 20 Hz and fu = f,/2), and the sampling rate is 
fs = 8,000 Hz. 

To add to the effect of simulated dynamics, it is 
sometimes helpful to do a bit of decay shortening 
on the low soft notes, using a loss factor p as de- 
scribed previously. It is also possible to simulate 
the spectral characteristics of soft notes by simply 
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turning the output of the algorithm on late, after 
some of the high-frequency energy has died away. 
This latter method has the effect of diminishing the 
attack noise, corresponding to a milder pluck. For 
other decay-softening techniques, see the section 
entitled Varying Attack Characteristics. 

Rests and the Ends of Notes 

In the case of a real string instrument, the player 
often plays two notes on the same string, playing 
the second note before the first has died away. The 
basic algorithm handles this without a problem for 
all but very high pitches, since the discontinuity at 
the beginning of the new note is perceived as a new 
pluck rather than as a click. (With a real instrument, 
there is a short time when the pick has muted the 
vibration for the previous note but has not yet set 
the string again into vibration, but this brief silence 
was not found to be necessary for realism in the 
synthetic model.) A problem arises, however, when 
there is a rest after a note. If the output of the algo- 
rithm is abruptly turned off (replaced by zeros), a 
discontinuity in the waveform results, causing a 
click. 

Even if the note is allowed to decay for a very 
long time, a note turned off abruptly may cause a 
click because the feedback loop has unity gain at 
0 Hz. To see this, note that Ga(O) = cos(O) = 1. Thus 
the final value of the waveform is the mean of the 
initial noise burst. Since the pseudo-random-number 
sequence used to initially excite the filter has a 
mean of zero only in special cases or when an in- 
finite number of samples is taken, the 0 Hz compo- 
nent can be significant. For uniform pseudorandom 
white noise at amplitude A, the statistical variance 
is A2/3, which implies a variance in sample mean 
over N samples equal to A2/(3N). Thus the stan- 
dard deviation of the mean in a length of N sam- 
ples is A/\V3N. As N decreases, the probability of 
having a large amount of energy at 0 Hz becomes 
greater. Karplus and Strong describe a technique 
they call "dithering" to handle this problem, but 
this technique was not economical in our context. 

Our solution to the discontinuity problem is as 
follows: the loss factor p, as was discussed for de- 

cay shortening, is set to a relatively small value in 
the last few milliseconds of the note. The duration 
of the decay is dependent on the loss factor chosen. 
A loss factor close to 1 simulates a string being 
damped with a soft material such as the flesh of the 
finger, while a smaller loss factor simulates damp- 
ing with a hard material, such as a pick. It is useful 
to compute p as a function of a desired t60. Substi- 
tuting Eq. (19) into Eq. (5) and solving for p yields 

e- l/fT 
t6o p(t60) = . A cot6 s(= ICOSfT)I' = ln(1000)' 

For pitches above about 3 KHz, clicks can appear 
even at the onset of notes. Onset clicks can also 
occur when a pianissimo setting of the dynamics 
filter is used, since the masking effect of the on- 
set noise burst is weakened by the dynamic filter. 
To alleviate this problem, it may be necessary to 
multiply the output of the algorithm by an expo- 
nential or linear envelope, rather than switching it 
on abruptly. 

Glissandi and Slurs 
A slur can be simulated by changing the order of 
the filter without reexciting it; that is, by chang- 
ing the delay buffer length N. The result is analo- 
gous to a performer's refretting a string without re- 
plucking it (what guitarists call the "hammer-on" 
and "pull-off" technique). A rapid alternation of as- 
cending and descending pitch changes gives a good 
left-hand-trill effect. 

If the buffer length is gradually changed over 
time, a crude glissando results. For low pitches and 
high sampling rates, it can be quite smooth, but for 
higher pitches and lower sampling rates, the pitch 
quantization resulting from the integer-delay lengths 
becomes noticeable. In the upper range, the effect 
is similar to a glissando on a fretted instrument, 
where the pitch changes in discrete steps, and it 
can be musically useful. Of course, the synthetic 
quantization is not in semitone intervals. 

A perfectly smooth glissando can be created by 
ramping C, the tuning coefficient, during the time 
between buffer-length changes. This technique can 
also be used to create vibrato. 
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Sympathetic String Simulation 
In a real string instrument, sympathetic vibrations 
of other open strings, as well as resonances in the 
instrument body, give each pitch in the range of the 
instrument an individual character and thus give 
the instrument as a whole a distinctive identifi- 
able character. In comparison, the basic form of the 
Karplus-Strong algorithm, like many instrument- 
simulation algorithms, has an excessive homogene- 
ity of character throughout its range. One way to 
remedy this situation is to feed the output of the 
string into a body resonator. This technique has 
produced impressive results, but its discussion is 
beyond the scope of this paper (see Smith 1983). 
Another way to combat unnatural uniformity is 
to create the effect of an instrument with sym- 
pathetic strings, using a modified version of the 
basic algorithm. 

Just as a sympathetic string is set into motion by 
the vibration of another string, the illusion of a 
sympathetically vibrating string can be created by 
exciting one copy of the string simulator by a small 
percentage of the output from another (plucked) 
string, tuned to a different pitch. 

In the discussion that follows, the algorithm that 
is excited with the noise burst is referred to as the 
plucked string and the algorithm that is excited 
only by the plucked string is referred to as the sym- 
pathetic string. All partials of the plucked string 
that do not coincide with those of the sympathetic 
string will be highly attenuated. Thus the sympa- 
thetic string acts as a bank of very narrow bandpass 
filters with center frequencies at the partial fre- 
quencies of the sympathetic string. The partials of 
the plucked string that will strongly resonate are 
those for which 

fi = fA, 
where fk is the frequency of the kth partial of the 
sympathetically resonating string, and f, is the fre- 
quency of the jth partial of the plucked string. 

A problem can arise after several successive noise 
bursts have excited the plucked string. The repeated 
reintroduction of energy into the sympathetic string 
may cause it to overflow. Therefore, it is essential 

that a loss factor p, such as was introduced with 
reference to decay shortening, be used to provide 
energy dissipation. 

The effect of several sympathetic strings can be 
created simply by a bank of parallel sympathetic 
strings, as defined above, each tuned to a different 
frequency. The resulting overall string-transfer func- 
tion (omitting fine tuning and decay alteration for 
clarity) is then 

H(z) = l+z 
1- 2 2 

(1 
M -i 

i I - p) 2 z- N "il-p." z-) 
where y is the fractional part of the plucked-string 
signal sent to the sympathetic strings, M is the 
number of sympathetic strings, pi is the loss factor 
for the ith sympathetic string, Ni = fJ/fi where f, is 
the fundamental frequency of the ith sympathetic 
string, and fs/N is the pitch of the plucked string 
and hence of the played note. 

The sympathetic-string version of the algorithm 
is also helpful in creating a stereo or quadraphonic 
image. By distributing around the room the outputs 
of several banks of differently tuned sympathetic 
strings, all fed with the same plucked string, the 
effect of being inside a huge guitar can be created. 

Attractive musical results have been created by 
replacing the plucked string with another computer 
instrument, so that the bank of sympathetic strings 
is used as a "reverberator." One can achieve the 
effect, for example, of a clarinet being played into 
an open grand piano with the pedal down. 

Simulation of a Moving Pick 
An effective means of simulating pick position is to 
introduce zeros uniformly distributed over the spec- 
trum of the noise burst. This can quite accurately 
simulate the effect of plucking a string at varying 
distances from the bridge. The noise burst is fil- 
tered with a comb filter, H,, having the difference 
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equation 
Yn = x, - Xn-,,N 

where /, is the fraction of the string between the 
bridge and pluck point. When /u = 1/2, the even 
harmonics are removed, and the effect is that of 
plucking a string at its midpoint. Similarly, when 
A = 1/10, every tenth harmonic is suppressed, and 
the effect is like plucking a tenth of the way up the 
string. With /A = 1/N, the filter approximates a dif- 
ferentiator, creating a sharp sul ponticello sound. 
For the theory behind the simulation of pick loca- 
tion, see Smith's paper (1982a). 

Varying the Character and Number of Attacks 
Since the attack is very important in perception of 
timbre, it is advantageous to be able to alter its 
character. To give a noticeably more noisy attack, 
approximating the sound of a snap or "Bart6k pizzi- 
cato," the duration of the noise burst x, can simply 
be increased from tx = NTs to some tx > NTs. Simi- 
larly, the attack can be subdued by making 0 < tx < 
NT,, though for very small tx the pluck illusion (as 
well as loudness) fades. 

A variety of other methods can soften the attack. 
The string can be excited with a rich harmonic 
spectrum rather than a noise spectrum, or with 
some mixture of the two, with the sum of their am- 
plitudes not exceeding 1. Another possibility is to 
lowpass filter the noise burst. Yet another way to 
soften the attack is to turn on the output of the 
algorithm late, after some of the high-frequency en- 
ergy has been filtered out. 

A realistic simulation of the up-and-down pick- 
ing pattern characteristic of a mandolin tremolo 
has been created by using a one-pole, lowpass filter, 
H,, to mellow the "up" picks while using the stan- 
dard unfiltered noise burst for the "down" picks. 

A crude simulation of instruments having multi- 
ple strings tuned in unison, such as the mandolin 
or bazooki, can be created by simply exciting the 
string with two successive noise bursts separated by 
a short amount of time, on the order of .05 sec. 
While multiple attacks can be achieved in this man- 

ner, the steady state fuses into a single note. In a 
real mandolin, the strings are never perfectly tuned, 
and the beating effect of the slightly mistuned strings 
is a strong recognition cue. A better mandolin sim- 
ulation simply uses two parallel forms of the algo- 
rithm, differing in pitch by a few cents and excited 
at slightly different times. 

Use of Other Filters in Feedback Loop 
The use of filters other than a one-zero for Ha will 
give a different decay characteristic and, in turn, a 
different timbre. However, care must be taken that 
the amplitude response G, does not reach unity near 
any partial frequency. Energy at any frequency fk 
for which Ga(fk) = 1 will never decay, and if G,(fk) 
> 1, the amplitude will grow exponentially until 
overflow. 

For example, a one-pole filter with the pole be- 
tween 0 and 1 gives a tone with the same attack 
and a more mellow decay than with a one-zero fil- 
ter; that is, the higher partials decay more rapidly. 
Placing the pole at z = Q and normalizing the peak- 
amplitude response of the one-pole filter to unity 
yield the transfer function 

- IQI H() = 1 - Ql" 

where IQI < 1 is required for stability of the one- 
pole filter. The transfer function of the whole string 
becomes 

1 
H(z) = H 

1z-z 1-IQI 
1 - Qz- 

1 - Qz-' 
1 - Qz- - (1 - IQI)z- 

Thus the difference equation is 

Yn = Xn - Qx,n- + QYn-1 + (1 - IQI)yn-N 

This version of the algorithm, with 0 < Q < 1 is 
useful for pitches in the lower half of the range. In 
the upper range, the notes die away too fast to be of 
use. This is because the one-pole, lowpass filter, 
with Q > 0, filters out the high-frequency energy 
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Fig. 7. Block diagram con- 
taining algorithm exten- 
sions discussed in this 
paper. 

To sympathetic strings 

0 n) 

X(n) HeHfO 0 Ha 

Hg H, 

in the loop much more drastically than does the 
one-zero, lowpass filter. A technique similar to that 
used in dynamics simulation could be used to com- 
pensate for this trend. 

Simulation of Stiff Strings 
The spectral components of the basic algorithm 
that have significant amplitude are almost perfectly 
harmonic after the attack noise has been filtered 
away, corresponding, in the real world, to a per- 
fectly flexible string. But since real strings always 
have some degree of stiffness, it is desirable to alter 
the spectrum of the algorithm accordingly. The the- 
ory of stiff strings (Morse 1976) indicates that stiff- 
ness creates a stretching of the partials according to 
the approximate formula 

fk = kfo 1 + 1 + k2 Tr 
282) A kfos(k), 8 

4 k = 1, 2,..., k2 < 2 

where fo is near the fundamental frequency, and k 
is the partial number. The parameter 8 has been 
called the coefficient of inharmonicity; if 8 = 0, 
then perfect harmonicity results. 

This effect can be created, in principle, by intro- 
ducing an allpass filter Hg(z) in the string loop (Al- 
len 1982) much as was done for the fine tuning of 
pitch. The phase delay in samples desired for an all- 
pass filter inserted in the feedback loop of a harmonic 
string simulator tuned to fl is given by solving 

fk 
k _ kf,s(k) 

Po + Pg(fk) s(l) 

sl) _ p Pg(fk) = f s( ) I f1s(k) 
where Po is the length of the loop in the absence of 
the allpass Hg (typically P + 1/2). Methods for de- 
signing allpass filters with prescribed phase delay 
are reviewed by Smith (1983). 

Summary 

Figure 7 shows a block diagram of the string simu- 
lator with some of our revisions, where Ha is the 
feedback lowpass filter, Hb is the delay line, H, is 
the allpass filter used for tuning, Hd is the lowpass 
filter used to simulate dynamics, He is the comb fil- 
ter that simulates pick position, Hf is the filter that 
simulates the difference between "up" and "down" 
picking, and Hg is the allpass filter used to simulate 
string stiffness. 

The simulator provides a high degree of flexibil- 
ity that begins to approach that of a skilled player 
performing on a real musical instrument. Many as- 
pects of a real string instrument have been simu- 
lated. Pitch can be precisely specified, and articula- 
tion can be finely tuned. An expressive vocabulary 
is provided by a wide variety of performance nu- 
ances, including such "left-hand" techniques as 
glissandi, slurs, and trills, as well as such "right- 
hand" techniques as variation in dynamic level, 
pick position, and attack characteristics. These pa- 
rameters were found to be sufficient to create shaped 
musical phrases. Furthermore, parameters such as 
sustain time, body resonance, string flexibility, 
bridge and pick hardness, and degree of sympathetic 
string excitation, which, in the case of real instru- 
ments, are usually fixed at the time of instrument 
construction, are available as performance parame- 
ters. It is important to point out that this variety is 
at no time achieved at the expense of the integrity 
of the basic sound. Rather, as is the case with a real 
musical instrument, the diversity exists within the 
bounds of a clearly defined sound domain. 
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Conclusion 
The algorithm originated by Karplus and Strong 
and extended by the methods outlined here has 
proven very useful as a computer instrument. In 
the process of composing May All Your Children 
Be Acrobats and Silicon Valley Breakdown, it was 
found to be sufficiently flexible to allow for a wide 
range of musical expression and sufficiently idio- 
syncratic to maintain a characteristic identity. We 
expect that new refinements of the algorithm will 
continue to arise. 
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