
Part II: Alignment and
Comparison

• Alignment
– DTW
– Matching what?

• Comparison
– Features for comparison
– Distance measures

• Audio Basis
– Latent Semantic Analysis, PCA, ICA



Sequence Alignment

Find a warping function
that minimizes global error
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X,Y 
• Audio: DTW
• Midi: Sequence Matching
• Mixed Midi & Audio : Score Alignment

d(x,y) 
• Audio: Signal Distance
• Midi: Edit Distance
• Mixed Midi & Audio: Combined

D(i,j)D(i,j-1)

D(i-1,j)D(i-1,j-1)
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Many types of alignment:

• GSA: Global Sequence Alignment
• LSA: Local Sequence Alignment
• LCS: Local Common Sequence
• ASM: Approximate String Matching
• OLM: Overlap Match
• DTW: Dynamic Time Warping
• TWLCS: Time Warp LCS

• Parse Midi into Score (Piano Roll) 
• Extract Features from Audio
• Calculate d(Score(i),Feature(j))
• Find best alignment:

- calculate D(i,j)
- back-trace to find the warping function c(i,j)

Principle:

Align.m

MidiWavAlign.m



• GSA: D(i,j) = min(D(i,j - 1) + 2, D(i - 1,j) + 2, D(i - 1,j - 1) + p), where if
X(i) ≈ Y(j) then p = -1 else p = 1 and D(i,0) = 2 i, for i = 0..M  and D(0,j) =
2 j, for j = 0..N.

• LSA: D(i,j) = min(D(i,j - 1) + 2, D(i - 1,j) + 2, D(i - 1,j - 1) + p, 0), where
if X(i) ≈ Y(j) then p = -1 else p = 1 and D(i,0) = 0, for i = 0..M  and D(0,j) =
0, for j = 0..N.

• LCS: D(i,j) = min(D(i,j - 1), D(i - 1,j), D(i - 1,j - 1) + p), where if X(i) ≈
Y(j) then p = -1 else p = 0 and D(i,0) = 0, for i = 0..M  and D(0,j) = 0, for j
= 0..N.

• DTW: D(i,j) = min(D(i,j - 1) + ins*p(i,j), D(i - 1,j) + del*p(i,j), D(i - 1,j -
1) + p(i,j)), where p(i,j) is the dissimilarity between X(i) and Y(j) and D(i,0)
= i, for i = 0..M  and D(0,j) = j, for j = 0..N.

Example of costs assignments:



Matching functions
• Sustain matching

– Harmonic model of note
spectrum

– D(Model,Signal)

• Onset detection
– High frequency content
– Spectral difference
– Phase variation
– Wavelet method

• Offset / Silence model
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Example: score driven filtering

Mozart K454

Duo Vln. only

Gershwin

All Ella Fitzgerald



Audio Similarity

• Features
• Distances

Audio with Perceptual Features
http://www.ofai.at/~elias.pampalk/ma/
Speech
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
Audio Basis
ABDist.m



Features (speech)

• AR coefficients
Fit linear AR filter

• Cepstrum
Homomorphic Decomposition
 and “liftering”! 

x(n) = aix(n "1)
i=1
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# + e(n)
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c(i) =F
-1 {log(|F {x(n)} |)}
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X(") =F {x(n)} = S(") # E(")
LPCAna.m, CepsAna.m



Features (perceptual audio)

• MFCC

mfcc.m



Why MFCC?

• Perceptual Mel
Frequency scale

• DCT is approx.
optimal (PCA)
transform of log-
spectra



Distances

• AR -> Itakura-Saito

• Cepstrum, MFCC -> Euclidian

Similarity ~ dot product
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Other Measures

• Zwicker based measures
– Bark-scale, Loudness in Sones
– Statistics are derived from loudness

measure at different frequencies
• Low level signal

– RMS, Spectral centroid, bandwidth,
zero-crossing,spectral roll-off, etc.

– Static and dynamic features
• Bispectral features

– IS generalized to Bispectra
– Performs well for texture matching
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Musical Content Features

• Chromagram

! 

f = 2h+c, c " [0,1) and h " Z

c = log2 f # log2 f$ %

Frequency f
Height h
Chroma c

Chroma.m



Chromagram example

Tristan Jehan, “Creating Music by Listening”, PhD thesis, MIT 2005 



MARSYAS
Extraction of 30 features from 30-second audio
tracks

Timbral Texture (19)
• Spectral Centroid – ‘brightness’ of sound
• Spectral Flux – local spectral change
• Zero Crossings – ‘noisiness’ of signal
• Low-Energy – amount of quiet time
• Mel-frequency Cepstral Cooefficients (MFCC)

Rhythmic Content (6)
• Beat Strength, Amplitude, Tempo Analysis

- Wavelet Tansform: Frequencies of peaks,
Relative amplitude of major peaks, Sum of all
peaks

Pitch Content (5)
• Dominant Pitch , Pitch Intervals

- Multipitch Detection Algorithm



Results

RBF networks: (Turnbull & Elkan 2005)
71% (std 1.5%)

Human classification in similar experiment (Tzanetakis & Cook
2001):

 70%

GMM with 3 Gaussians per class (Tzanetakis & Cook 2001):
61% (std 4%)

Support Vector Machine (SVM) (Li & Tzanetakis 2003):
69.1% (std 5.3%)

Linear Discriminant Analysis (LDA) (Li & Tzanetakis 2003):
71.1% (std 7.3%)

• Classical
• Country
• Disco
• Hip-Hop
• Jazz

• Rock
• Blues
• Reggae
• Pop
• Metal

10 examples each



Audio Basis

• Geometric representation
• Feature matrix factorization
• Latent Semantic Analysis
• PCA versus ICA
• Audio Basis



• Geometric Representation

The Model
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Geometric RepresentationGeometric Representation
Finding a Basis

S
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Spectral slices /
time frames

Basis
functions

Expansion
Coefficients



PCA & ICA
• PCA

– Projects d-dimensional data onto a lower dimensional
subspace in a way that is optimal in  Σ|x0 – x|2 sense

– Can be efficiently estimated using SVD
– Used in Latent Semantic Indexing (LSI)

• ICA
– Seek directions in signal / feature space such that resulting

signals show independence.
– Motivated by an idea the sound is a linear combination of

independent “sound objects”



Latent Semantic Indexing
• problem #1: text - LSI: find ‘concepts’



• X = U L VT
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LSI (cont.)



• X = U L VT
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LSI (cont.)



SVD - Example

• A = U L VT
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LSI: Sound -Text analogy

• Document Sound Frame
• Terms Feature Values
• Concepts Sound Objects

Examples – m spectral frames

Features – fft bins

Objects – spectral shapes



Summary: LSI Interpretation
‘features’, ‘examples’ and ‘objects’:
• U: features-to-objects similarity matrix
• V: examples-to-object sim. matrix
• L: diagonal elements: ‘strength’ of each

object



ICA  vs. PCA

Let’s generate 2 random
coefficients from 2-D
uniform distribution

! 

s = [s
1
,s
2
]



ICA  ICA  vsvs. PCA. PCA
Let A be the “objects” matrix

that results in features x

x = As
The features are no longer
statistically independent

Are the components of x
correlated one with another?
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We apply PCA transform to x
and get a new vector y

Are the components of y
statistically independent?

Are the components of y
correlated to one each other?

We conclude that PCA
estimated a vector  y that has
uncorrelated components.

However, it failed to estimate
the independent components
of the source x

ICA  ICA  vsvs. PCA. PCA



The points after ICA analysis.

We see that ICA has
successfully estimated the
independent components of the
mixed sources.

The obvious question is how
ICA does that? And why PCA
fails to do it?

ICA  ICA  vsvs. PCA. PCA



The directions of the principle
components of x

The principle components
directions are chosen so that
they explain the maximum
amount of variance of x

e.g. The first principle
component:

}){(maxarg 2

1 xwEw
T

=

ICA  ICA  vsvs. PCA. PCA



The directions on which
ICA project x’ to estimate
the sources.

How does ICA choose
these directions?

ICA  ICA  vsvs. PCA. PCA



Principles of ICA estimation - ExamplePrinciples of ICA estimation - Example  
The distribution of one of the
estimated independent
components.

This distribution is the most
non-gaussian one, that ICA
found.

On the other hand..



Principles of ICA estimation - ExamplePrinciples of ICA estimation - Example  

The Distribution of one of
the components after PCA
analysis.

By successive rotations of
the PCA vectors, a local
maximum non-Gaussian
solution is found

The procedure is repeated
for the next component



Audio Basis Algorithm

-Data Reduction (SVD) to r dimensions
(1)
(2)

- ICA
 (3)        [A,W,S] = ICA (      )

- Independent Coefficients:
- ICA matrix:
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We can use Cx, B for reconstruction of the data by:

(5)
or

! 

X
rec

= ˜ X *V
r

T
= ˜ X *W

T
* (W

"1
)

T
*V

r

T
= C

x
* B

T

! 

X
rec

T
= B*C

x

T

*=

Features
Basis Coeff.

! 

X
rec

T

! 

B

! 

C
x

T
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AudioBasis.m



AB Distance
Likelihood of sound y given AB model

! 

X
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T
= B*C

x

T

- Represent y in the basis of x

- Compare between      and
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ABDist.m

% [L1,SX,SY,VY] = ABDist(x,y,ABType,DistType)
% Distance between sounds using Audio Basis
% Input:
% x - query sound
% y - reference sound
% ABtype - type of Audio Basis (AB):
%   'MAG' - Short time FFT magnitudes (default)
%   'ENV' - MPEG-7 AudioSpectrumEnvelope 
% (4 Bands Per Octave)
%   'ERB' - ERB Auditory filter Bank
% DistType- type of distance measure
%   'KL' - Kulback Liebler distance using GMM model
%   'Like' - log probability using GMM
%   'IS' - Itakura Saito Distance



MPEG7 matching with HMM


