
Digital Filters 

1.0 Aim 
Understand the principles of operation and characterization of digital filters 

2.0 Learning Outcomes 
You will be able to: 
• Implement a digital filter in MATLAB. 
• Investigate how commercial filters work  
• Describe the transfer function of a filter  
 

A. Introduction 
 
Suppose the "raw" signal which is to be digitally filtered is in the form of a voltage 
waveform described by the function V = x (t) where t is time. This signal is sampled at 
time intervals h (the sampling interval). The sampled value at time t = ih is xi = x (ih) 
 
Thus the digital values transferred from the ADC to the processor can be represented by 
the sequence 
 
x0, x1, x2, x3, ... 
 
corresponding to the values of the signal waveform at times t = 0, h, 2h, 3h, ... (where t = 
0 is the instant at which sampling begins). 
 
At time t = nh (where n is some positive integer), the values available to the processor, 
stored in memory, are 
 
x0, x1, x2, x3, ... , xn 
 
Note that the sampled values xn+1, xn+2 etc. are not available as they haven't happened 
yet! 
 
The digital output from the processor to the DAC consists of the sequence of values 
 
y0, y1, y2, y3, ... , yn 
 
In general, the value of yn is calculated from the values x0, x1, x2, x3, ... , xn. The way in 
which the y's are calculated from the x's determines the filtering action of the digital 
filter. 
 
 
 
 



Examples of simple digital filters 
 
The following examples illustrate the essential features of digital filters. 
 
1. UNITY GAIN FILTER: yn = xn 
 
      Each output value yn is exactly the same as the corresponding input value xn: 
 
          y0 = x0 
          y1 = x1 
          y2 = x2 
          ... etc 
 
      This is a trivial case in which the filter has no effect on the signal. 
 
2. SIMPLE GAIN FILTER: yn = Kxn (K = constant) 
 
      This simply applies a gain factor K to each input value: 
 
          y0 = Kx0 
          y1 = Kx1 
          y2 = Kx2 
          ... etc 
 
      K > 1 makes the filter an amplifier, while 0 < K < 1 makes it an attenuator. K < 0 
corresponds to an inverting amplifier. Example (1) above is the special case where K = 1. 
 
 
3. PURE DELAY FILTER: yn = xn-1 
 
      The output value at time t = nh is simply the input at time t = (n-1)h, i.e. the signal is 
delayed by time h: 
 
          y0 = x-1 
          y1 = x0 
          y2 = x1 
          y3 = x2 
          ... etc 
 
      Note that as sampling is assumed to commence at t = 0, the input value x-1 at t = -h is 
undefined. It is usual to take this (and any other values of x prior to t = 0) as zero. 
    
4. TWO-TERM DIFFERENCE FILTER: yn = xn - xn-1 
 
      The output value at t = nh is equal to the difference between the current input xn and 
the previous input xn-1: 



 
          y0 = x0 - x-1 
          y1 = x1 - x0 
          y2 = x2 - x1 
          y3 = x3 - x2 
          ... etc 
 
      i.e. the output is the change in the input over the most recent sampling interval h. The 
effect of this filter is similar to that of an analog differentiator circuit. 
 
5. TWO-TERM AVERAGE FILTER: yn = (xn + xn-1) / 2 
 
      The output is the average (arithmetic mean) of the current and previous input: 
 
          y0 = (x0 + x-1) / 2 
          y1 = (x1 + x0) / 2 
          y2 = (x2 + x1) / 2 
          y3 = (x3 + x2) / 2 
          ... etc 
 
      This is a simple type of low pass filter as it tends to smooth out high-frequency 
variations in a signal. (We will look at more effective low pass filter designs later). 
  
6. THREE-TERM AVERAGE FILTER: yn = (xn + xn-1 + xn-2) / 3 
 
      This is similar to the previous example, with the average being taken of the current 
and two previous inputs: 
 
          y0 = (x0 + x-1 + x-2) / 3 
          y1 = (x1 + x0 + x-1) / 3 
          y2 = (x2 + x1 + x0) / 3 
          y3 = (x3 + x2 + x1) / 3 
          ... etc 
 
      As before, x-1 and x-2 are taken to be zero. 
   7. CENTRAL DIFFERENCE FILTER: yn = (xn - xn-2) / 2 
 
      This is similar in its effect to example (4). The output is equal to half the change in 
the input signal over the previous two sampling intervals: 
 
          y0 = (x0 - x-2) / 2 
          y1 = (x1 - x-1) / 2 
          y2 = (x2 - x0) / 2 
          y3 = (x3 - x1) / 2 
          ... etc 
 



 
Order of a digital filter 
 
The order of a digital filter can be defined as the number of previous inputs (stored in the 
processor's memory) used to calculate the current output. This is illustrated by the filters 
given as examples in the previous section. 
 
Examples (1-2): These are zero order filters, since the current output depends only on the 
current input and not on any previous inputs. 
 
Example (3-5): These are first order filters, as one previous input (n-1) is required to 
calculate current sample. (Note that in (3) the filter is classed as first-order because it uses 
one previous input, even though the current input is not used). 
 
Example (6-7):  To compute the current output, two previous inputs are needed; this is 
therefore a second-order filter. 
 
The order of a digital filter may be any positive integer. A zero-order filter is possible, 
but somewhat trivial, since it does not really filter the input signal in the accepted sense. 
 
 
Digital filter coefficients 
 
All of the digital filter examples given in the previous section can be written in the 
following general forms:  
 
yn = a0xn + a1xn-1 + a2xn-2 
 
Similar expressions can be developed for filters of any order. 
 
 
The constants a0, a1, a2, ... appearing in these expressions are called the filter coefficients. 
The values of these coefficients determine the characteristics of a particular filter. 
 
 
Recursive and non-recursive filters 
 
For all the examples of digital filters discussed so far, the current output is calculated 
solely from the current and previous input values. This type of filter is said to be non-
recursive. 
 
A recursive filter is one that in addition to input values also uses previous output values. 
These, like the previous input values, are stored in the processor's memory.  
 
The word recursive literally means "running back", and refers to the fact that previously-
calculated output values go back into the calculation of the latest output. The expression 



for a recursive filter therefore contains not only terms involving the input values (xn, xn-
1, xn-2, ...) but also terms in yn-1, yn-2, ... 
 
Example of a recursive filter 
 
A simple example of a recursive digital filter is given by 
 
yn = xn + yn-1 
 
In other words, this filter determines the current output by adding the current input (xn) to 
the previous output. 
 
Thus: 
 
    y0 = x0 + y-1 
    y1 = x1 + y0 
    y2 = x2 + y1 
    y3 = x3 + y2 
    ... etc 
 
Note that y-1 (like x-1) is undefined, and is usually taken to be zero. 
 
Let us consider the effect of this filter in more detail. If in each of the above expressions 
we substitute for yn-1 the value given by the previous expression, we get the following: 
 
    y0 = x0 + y-1 = x0 
    y1 = x1 + y0 = x1 + x0 
    y2 = x2 + y1 = x2 + x1 + x0 
    y3 = x3 + y2 = x3 + x2 + x1 + x0 
    ... etc 
 
Thus we can see that yn, the output at t = nh, is equal to the sum of the current input xn 
and all the previous inputs. This filter therefore sums or integrates the input values, and 
so has a similar effect to an analog integrator circuit. 
 
This example demonstrates an important and useful feature of recursive filters: the 
economy with which the output values are calculated, as compared with the equivalent 
non-recursive filter. In this example, each output is determined simply by adding two 
numbers together. 
 
 
FIR and IIR filters 
 
Some people prefer an alternative terminology in which a non-recursive filter is known as 
an FIR (or Finite Impulse Response) filter, and a recursive filter as an IIR (or Infinite 



Impulse Response) filter. These terms refer to the differing "impulse responses" of the 
two types of filter 
 
The impulse response of a digital filter is the output sequence from the filter when a unit 
impulse is applied at its input. (A unit impulse is a very simple input sequence consisting 
of a single value of 1 at time t = 0, followed by zeros at all subsequent sampling instants). 
An FIR filter is one whose impulse response is of finite duration. An IIR filter is one 
whose impulse response (theoretically) continues for ever, because the recursive 
(previous output) terms feed back energy into the filter input and keep it going. The term 
IIR is not very accurate, because the actual impulse responses of nearly all IIR filters 
reduce virtually to zero in a finite time. Nevertheless, these two terms are widely used. 
 
 
Order of a recursive (IIR) digital filter 
 
The order of a digital filter was defined earlier as the number of previous inputs that have 
to be stored in order to generate a given output. This definition is appropriate for non-
recursive (FIR) filters, which use only the current and previous inputs to compute the 
current output. In the case of recursive filters, the definition can be extended as follows: 
 
    The order of a recursive filter is the largest number of previous input or output values 
required to compute the current output. 
 
 
For example, the recursive filter discussed above, given by the expression 
 
    yn = xn + yn-1 
 
is classed as being of first order. 
 
 
Coefficients of recursive (IIR) digital filters 
 
From the above discussion, we can see that a recursive filter is basically like a non-
recursive filter, with the addition of extra terms involving previous outputs (yn-1, yn-2 
etc.). 
 
The general form of recursive filter with M recursive (output) and N direct (input) 
elements is 
 
b0yn + b1yn-1 + … +  bMyn-M = a0xn + a1xn-1 + aNxn-N 
 
Note the convention that the coefficients of the inputs (the x's) are denoted by a's, while 
the coefficients of the outputs (the y's) are denoted by b's. 
 
The order of IIR filter is max(N,M) 



Implementation of Digital Filters 
 
Output from a digital filter is made up from previous inputs and previous outputs. This 
operation can be written as weighted moving average between filter coefficients and a 
signal flipped back to front. This summation is called the operation of convolution 
 

 
 
The filter can also be drawn as a following block diagram 
 

 
 
The filter diagram can show what hardware elements will be required when 
implementing the filter: 
 
 

 
 
 



Commercial DSP chips are specifically designed to perform fast buffering, additions and 
multiplications of multiple data in one clock cycle. The precision of the output depends 
on the precision of the numerical representation of the coefficients, the samples and the 
operation results. Finite precision of these elements leads to quantization errors. So apart 
from errors when measuring signals, the following errors arise within the hardware used 
for processing: 
 
• errors in arithmetic within the hardware (for example 16 bit fixed point roundoff) 
• trncation when results are stored (most DSP processors have extended registers 

internally, so truncation usually occurs when results are stored to memory) 
• quantisation of filter coefficients which have to be stored in memory 

 

B. The transfer function of a digital filter 
 
In the last section, we used two different ways of expressing the action of a digital filter: 
a form giving the output yn directly, and a "symmetrical" form with all the output terms 
(y's) on one side and all the input terms (x's) on the other. 
 
In this section, we introduce what is called the transfer function of a digital filter. This is 
obtained from the symmetrical form of the filter expression, and it allows us to describe a 
filter by means of a convenient, compact expression. The transfer function of a filter can 
be used to determine many of the characteristics of the filter, such as its frequency 
response. 
 
The unit delay operator 
 
First of all, we must introduce the unit delay operator, denoted by the symbol 
 
z-1 
 
When applied to a sequence of digital values, this operator gives the previous value in the 
sequence. It therefore in effect introduces a delay of one sampling interval. 
 
Applying the operator z-1 to an input value (say xn) gives the previous input (xn-1): 
 
z-1 xn = xn-1 
 
Suppose we have an input sequence 
 
    x0 = 5 
    x1 = -2 
    x2 = 0 
    x3 = 7 
    x4 = 10 



 
Then 
 
    z-1 x1 = 5 
    z-1 x2 = -2 
    z-1 x3 = 0 
 
and so on. Note that z-1 x0 would be x-1 which is unknown (and usually taken to be zero, 
as we have already seen). 
 
Similarly, applying the z-1 operator to an output gives the previous output: 
 
z-1 yn = yn-1 
 
Applying the delay operator z-1 twice produces a delay of two sampling intervals. We 
adopt the convention (soon to be explained why) 
 
z-1 z-1 = z-2 
 
i.e. the operator z-2 represents a delay of two sampling intervals: 
 
z-2 xn = xn-2 
 
This notation can be extended to delays of three or more sampling intervals, the 
appropriate power of z-1 being used. 
 
Let us now use this notation in the description of a recursive digital filter. Consider, for 
example, a general second-order filter expressed using the delay operator given in its 
symmetrical form 
 

 (b0 + b1z-1 + b2z-2) yn = (a0 + a1z-1 + a2z-2) xn 
 
Rearranging this to give a direct relationship between the output and input for the filter, 
we get 
 
yn / xn = (a0 + a1z-1 + a2z-2) / (b0 + b1z-1 + b2z-2) 
 
This is the general form of the transfer function for a second-order recursive (IIR) filter. 
 

Transfer function examples 
 
   1. The three-term average filter, defined by the expression 
 
      yn = 1/3 (xn + xn-1 + xn-2) 
 
      can be written using the z-1 operator notation as 



 
      yn = 1/3 (xn + z-1xn + z-2xn) 
 
      = 1/3 (1 + z-1 + z-2) xn 
 
      The transfer function for the filter is therefore 
 
      yn / xn = 1/3 (1 + z-1 + z-2) 
   
 2. The general form of the transfer function for a first-order recursive filter can be 
written 
 
      yn / xn = (a0 + a1z-1) / (b0 + b1z-1) 
 
      Exercise: Write done transfer function of a simple first-order recursive filter 
 
      yn = xn + yn-1 
 
       
   3. In MATLAB it is common to express the coefficients as vectors A and B. As a 
further example, consider the second-order IIR filter with coefficients B = [1 2 -1], A=[1 
2 1]. 
 
      Expressing this filter in terms of the delay operator gives 
 
      (1 + 2z-1 - z-2) yn = (1 + 2z-1 + z-2) xn 
 
      and so the transfer function is 
 
      yn / xn = (1 + 2z-1 + z-2) / (1 + 2z-1 - z-2) 
 
 
Delaying a phasor 
 
Filters operate by combining delayed version of input and output signals. The operation 
of a delay line is best understood using a complex periodic signal called phasor, 
expressed in terms of continuous time parameter t (instead of index n) 
 

! 
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This is a rotating vector on the unit circle (complex number of magnitue 1) that 
completes one full cycle in 

! 

T = 2" /#  seconds. Note that we express here the imaginary 
unit number by

! 

j = "1 . (It is commonly expressed also using the letter i, so we might 
use i or j interchangeably) 
 
If we delay the phase by 

! 

"  seconds, we get 
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Note that

! 

"  in the exponent represents a fixed delay time. It should not be confused with 
the time parameter t in the exponent of the phasor that keeps increasing (time goes on). A 
delay then becomes a multiplication by a constant complex number 

! 

e
j"#  . 

 
In case of a single sample delay, the multiplicative delay factor is written using the 
symbol z 
 

! 

z = e
" j#  

 
 
 
Example: 
 
For a FIR order one filter  
 

! 

yt = aoxt + a
1
xt"1 

 
the effect of applying a delay to input that is a phasor  
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becomes 
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The multiplicative expression 
 
 

! 
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0
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1
e
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is called the filter Transfer Function. 
 
 
Describing filters in terms of Transfer Function.  
 
Filters are made of weighted sums of delayed input and output samples. When filter is 
applied to a general signal, we used the unit delay notation to represent the filter in an 
elegant way as weighted sums of repeated unit delay operations.  
 
So far the unit delay appeared as a new mathematical operation that alters the time index 
n of input or output samples (x(n) and y(n)). As we just saw, in the special case of a 
phasor signal the delay actually becomes a multiplication by a complex number that has a 
unit magnitude and whose angle is equal to the amount of time delay that is being applied 
to that phasor.  



 
What is interesting and important in understanding the effect of a filter on a phasor is that 
the now the operation of any filter on any signal can be described in terms of transfer 
function. How? 
 
Using transfer function, the effect of the filter on a phasor is written mathematically in 
terms of multiplication of the phasor by complex polynomial or by a ratio of complex 
polynomials. The coefficients of this polynomial are equal to coefficients of the filter, 
with forward filter coefficients appearing at the numerator and backward (recursive) filter 
coefficients at the denominator, and the delays are the negative powers of z. 
 
When considering some other signal, it still can be described in terms of a combination of 
complex phasors. This is done by writing any signal in terms of a weighted sum of 
phasors and different frequency. The coefficients (amplitudes and phases) of these 
phasors are found by transforming the signal into a complex domain using the Fourier 
Transform. In the frequency domain, the delay operation becomes multiplication of each 
phasor component by a transfer function. This is also called the system Z-transform. 
 
In summary: Using Fourier Transform allows any signal in terms of combination of 
phasor. This allows expressing the output of a filter in terms of a multiplication between 
signal input frequency elements and the filter transfer function. The filtering operation 
can be described in the frequency domain as weighted combination of delays of the 
phasor components of the input x(n) signals.  
 
We will learn about Fourier Transforms in the next section.  
 
The z-plane 
Once the Z-transform of a system has been determined, one can use the information 
contained in function's polynomials to graphically represent the function and easily 
observe many defining characteristics.   
   

! 

H(z) =
P(z)

Q(z)
 

 
Zeros 

1. The value(s) for z where P(z)=0 
2. The complex frequencies that make the overall gain of the filter transfer function 

zero. 
 
Poles 

1. The value(s) for z where Q(z)=0 
2. The complex frequencies that make the overall gain of the filter transfer function 

infinite. 
 
       
Example 1 



 
This is a simple transfer function with the poles and zeros shown below it. 
      
     Hz=(z+1)/[(z−1/2)(z+3/4)] 
    
        
The zeros are: {-1}, The poles are: {1/2, -3/4} 
 
Once the poles and zeros have been found for a given Z-Transform, they can be plotted 
onto the Z-Plane.  The Z-plane is a complex plane with an imaginary and real axis 
referring to the complex-valued variable z.  The position on the complex plane is given 
the radio and the angle from the positive, real axis around the plane. When mapping poles 
and zeros onto the plane, poles are denoted by an "x" and zeros by an "o".   
 
 
The below figure shows the Z-Plane, and examples of plotting zeros and poles onto the 
plane can be found in the following section. 
       
 

 
     
Examples of Pole/Zero Plots 
 
 
Plotting z-plan in MATLAB 
% Set up vector for zeros 
z = [j ; -j]; 
 
% Set up vector for poles 
p = [-1 ; .5+.5j ; .5-.5j]; 
 
figure(1); 
zplane(z,p); 
title('Pole/Zero Plot for Complex Pole/Zero Plot Example'); 
  
Frequency Response and the Z-Plane 
 



The reason it is helpful to understand and create these pole/zero plots is due to their 
ability to help us easily design a filter.  Based on the location of the poles and zeros, the 
magnitude response of the filter can be quickly understood.  Also, by starting with the 
pole/zero plot, one can design a filter and obtain its transfer function very easily.  Refer to 
this module for information on the relationship between the pole/zero plot and the 
frequency response. 
 
Estimating the Frequency Response of an IIR Filter in MATLAB 
 
%***Low Pass Averaging Filter*** 
% 
% y(n) = y(n-1) + 0.1[x(n) - y(n-1)] 
% 
%H(Z) = 0.1Z/(Z - 0.9) 
num = [0.1] 
den = [1 -0.9] 
Fs = 10 
freqz(num, den, 128, Fs) 
 
 

 
 
 
Additional reading: Steiglitz book 4.7, 4.8, 5.3, 5.4, 5.5, 5.7, 6.1 


