
Spectral Audio Processing using the STFT and Cross Synthesis 
 

1.0 Aim 
Understand the principles of operation of spectral audio processing using the short time 
Fourier transform (STFT) and implement Cross Synthesis using STFT  

2.0 Learning Outcomes 
You will be able to: 
• Understand the principles of signal buffering and its use in STFT analysis  
• Understand the conditions for perfect reconstruction using ISTFT. 
• Implement STFT and ISTFT analysis-synthesis in MATLAB. 
• Understand the principles of spectral modifications using STFT 
• Understand the concept of spectral envelope and its estimation by linear prediction 

(LPC)  
• Implement Cross Synthesis algorithm using STFT and LPC 
 

A. Introduction  
 
Short Time Fourier Transform performs FFT analysis on short windows in time. This is 
also called “sliding-window” FFT. The results of the FFT represent the contents of the 
audio signal in terms of time-frequency information.  STFT processing has two main 
components: analysis and synthesis. We analyze sound in terms of spectral models 
primarily because: 

• Time-Frequency (T-F) analysis is what the human brain does 
• We may synthesize sound in terms of STFT models 
• It allows processing and signal modification directly in the T-F domain 
• It allows time-varying, adaptive and other non-linear signal modifications. 

 
Understanding the concept of STFT requires firm understanding of the relations between 
FFT and filtering, as well as concepts of phasor amplitude and phase. We will experiment 
with different modifications of amplitudes and phases to demonstrate its acoustic 
“meaning”. 

A. Short Time Fourier Transform  
 

Short-time analysis and synthesis enables us to represent the spectra of signals with 
spectral profiles that change over time (which is the case for most “interesting” 1-
dimensional signals such as speech and music). We can think of STFT as multiplying the 
signal x[n] by a short-time window that is centered around the time frame n. The segment 
of the signal contained in the window is analyzed using the DFT, which implies the 
evaluation of the Time-Frequency representation at a set of discrete frequencies where 
 
 



 
 
A. Impact of window size and shape 
The window serves several functions: 

• It allows controlling the tradeoff between frequency resolution and side-lobe 
suppression (i.e. how sharp a peak in frequency is versus how high are the 
sidelobes) 

• Using band-limited window allows better “localization” in time-frequency. Note 
that square window is not band-limited. 

• To allow perfect reconstruction the windows must sum up to 1 (so called COLA 
condition, to be explained later) 

In the OLA interpretation of the STFT, we apply a time-shifted window w[n-m] to our 
signal x[n], selecting data near time m, and compute the Fourier-transform to obtain the 
spectrum of the m-th frame. STFT is viewed as a time-ordered sequence of spectra, one 
per frame, with the frames overlapping in time. 
 
 

 

 

B. Inverse STFT  
 
Because of the FFT and IFFT duality it is possible to reconstruct the original signal by 
summing the FFT.  
    
 
x[n]              -----------    X[k] 
x[m]w[n-m] -----------    X[n,k] 
 
Note that IFFT will recreate windowed signals, which then need to be summed together 
in a fashion the reminds the overlap-add method. The only difference is that instead of 
using rectangular windows we use tapering of the signal segments by the windowing 
function. If the windows sum up to one, this is called COLA condition 

 



 
Summation of triangular windows give a constant level: 
 

 
 
 

C. Spectral Modification using the STFT  
  
It seems very natural to modify the sound properties by modifying parameters in the 
spectral domain. Actually we tend to think about filters as operations on frequency 
contents, so modifications such as low pass, high pass or bandpass are immediately 
translated to suppression of appropriate frequencies in the time-frequency domain. Using 
the relation between multiplication in frequency and convolution in time such 
modifications are possible, but there is an important caveat – since we are dealing with 
discrete time and discrete frequency signals, multiplication between DFT’s is equivalent 
to circular-convolution and NOT linear convolution. We have investigated this topic in 
the previous set of notes in relation to fftfilt. We need to assure that the equivalent time 
domain impulse response for our desired frequency modification is time-limited so that 
we can use a long FFT with zero padding to turn the circular convolution into a linear 
(regular) convolution. Unless we can assure that, the result of manipulating the spectral 
contents of STFT will result in so called time-aliasing artifact, which is just another name 
for circular convolution.  
Let us give an example: Assume you want to create a bandpass filter with W = [0.2 0.3]. 
We are using here a MATLAB notation for specification of filter response in frequency a 
common in filter design, such as the W parameter in fir1 command. W specifies the 
passband in terms of frequency range [0 1] that corresponds to [0 SamplingFreq/2].  
A straightforward but incorrect way of doing such filtering is letting through only the 
FFT bins (rows in the STFT matrix) that correspond to these frequencies, which 
correspond to the STFT rows between 
Passband =  [round(0.2*nfft/2): round(0.3*nfft/2)]  
and their counterpart in the negative frequencies (the frequencies above Nyquist).  
In general when manipulating the STFT we will consider only the positive frequency part 
of the FFT bins that fall on bins numbers 1:nfft/2+1, and then replicate the design of that 
part in the negative frequencies range by copying the filter symmetrically. So if H is the 
frequency design in the positive frequency range (1:nfft/2+1), we complete it to the 
whole frequency range (1:nfft) by H = [H; conj(H(end-1:-1:2))]; 
Note: we use one more bin in the positive frequency range (fft bins (1:nfft/2+1)) since bin 
1 corresponds to frequency of  0 Hz (DC) and the other bins are symmetric in the 
following fashion: bin 2 correpond to nfft, bin 3 to nfft-1 and so on. If the frequency 
design contains a phase specification, or in other words if H is complex, then the filter 



response in the upper (negative) frequencies should be a conjugate of the lower part, to 
assure that the impulse response is real. 
 
If we perform a filtering operation by cutting off the frequencies outside of the passband, 
as described above and go directly to synthesize the signal by ITFT, we actually 
implement an ideal passband filter, which has an impulse response nfft long . This means 
in fact that in terms of fftfilt operation we are doing the wrong thing since both the signal 
window and the filter impulse response are same length as the fft size. Doing such 
modification followed by ISTFT will create time-aliasing.  
 
One remedy to the situation is to use an FIR spectral design methods instead of directly 
manipulating the STFT. As a matter of fact, a very crude method of filter design is going 
back to time from the frequency specification by inverse fft – this will create a finite 
impulse response of the length of fft, and then going back to frequency with a higher fft 
size that does zero the needed zero padding. This requires doing first an STFT with short 
nfft size for specifying the design in frequency, then going back to time to create a short 
impulse response, and finally going again into frequency domain with high STFT to 
achieve the modification with enough zero padding to avoid time-aliasing. This requires 
two extra fft steps, and it effectively performs two separate steps – STFT analysis as visul 
help for filter design, and second step that is equivalent to fftfilt to do the actual filtering. 
Of coure the filtering can be done directly in time domain using other filtering methods, 
including IIR filtering that can not be done by STFT. 
 The effect of different filter designs and time-aliaing in STFT domain will be 
demonstrated in class…  
 

D. Spectral Envelope Estimation using LPC  
Spectral envelope is a smooth curve that “envelopes” the graph of FFT magnitudes. It can 
be imagined as a string hanging of the peaks of FFT, giving an overall shape of the 
spectrum but not tracing the actual shape of the individual FFT bins. In fact, there are 
various ways to define and measure spectral envelope, also depending on the intended 
application. One of the most common usages of spectral envelopes is describing the so-
called formant structure in speech. Formants are broad amplification areas in the 
frequency domain that are attributed to resonances of the vocal tract. Apparently our 
ability to understand speech and recognize phonemes of speech can be described by the 
tracing the frequencies of 2 or 3 lower formants. These formants are the peaks of a 
spectral envelope, disregarding or being insensitive to fine details of the spectrum. As a 
matter of fact, we can still recognize the vowel “a” even when the pitch changes and the 
actual partials or the details of the FFT are very different. What is common to all 
different vocalizations of a particular phoneme is that its spectral envelope, and it 
corresponding formant peaks, remain relatively constant, independent of pitch, or even 
whispered voice. 
A lot of speech recognition deals with recognition of phonemes, and thus estimation of 
spectral envelopes. We will borrow one such method called “linear prediction” 
 



What linear prediction tries to do is match a low order recursive filter to a given 
waveform. It does so by trying to create a predictor (this is where the name comes from) 
so that the next sample can be predicted from a short past. So prediction is in fact done by 
finding a short FIR filter that is operating on past samples that outputs an estimate of 
what is going to be the next sample. The difference between the predicted next sample 
and the true sample is called “prediction error” or “residual”. 
The reason for explaining this is to understand how prediction turns into signal 
approximation or modeling. In our application we want to use the modeling aspect of 
LPC, rather then prediction, in the following way: 
Consider the following prediction equation 
y’(n) = a1*y(n-1) + a2*y(n-2) + …+ap*y(n-p)  
y’(n) is the prediction of y(n), so the error is e(n) = y(n)-y’(n) 
Plugging this into the prediction equation allows us to write 
y(n) = -a1*y(n-1) - a2*y(n-2) - …-ap*y(n-p) + e(n) 
If we consider the error e(n) as an “input”, and y(n) as an “output”, what we have here is 
a recursive filter that creates the current output y(n) from a combination of previous 
outputs y(n-1), …., y(n-p) and an input signal that is the residual “noise”. In other words, 
we created a recursive filter the is driven by noise that tries to recreate the original signal. 
IIR filters that have only recursive part are also called All-pole filters or Auto-regressive 
(AR) filters. (Note- FIR filters are sometimes called Moving Average (MA) filters, so a 
general IIR filter that has both poles and zeros is sometimes called ARMA). 
 
Spectral envelope estimation using LPC: 
Linear prediction is realized in matlab using lpc command. The output of lpc is a set of 
filter coefficients (1, a1, a2, …, ap) where p is the order of lpc that is specified by the 
user. The letter “c” in lpc stands for “coefficients”.  
If we want to describe the filter in terms of transfer function in frequency, we consider 
Y(z) as the output (using the z- method to translate time to frequency using the delay 
operator), and white noise of as input. Since, for reasons not explained here, the spectral 
amplitude of white noise is flat in frequency, we assume that the input is identically 1 for 
all frequencies. Since e(n) (out noise input in the signal approximation approach) might 
be of some power e that is not unit, we actually assume that e(n)=e*u(n) where u(n) is a 
unit variance white nose. Doing all that gives an expression for Y(z) as 
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In our Cross synthesis application we will consider the amplitude of Y(z), i.e. abs(Y(z)) 
as a model of the spectral envelope of the modulator speech signal. We will use this 
spectral envelope as a time-varying filter that will modify the STFT of another signal, in 
our case a musical “carrier” signal, to create a TalkBox.  
It should be noted that lpc is done on short frames, so that the filter A(z) is re-estimated 
adaptively over time. Applying such time-varying envelope to a musical filter creates a 
time varying filter that creates the talking effect. 
 



Final Project: TALKBOX 
 
Your final “big” programming project will be implementing Cross Synthesis between 
voice and musical signal. To do that you need to implement the following stages of the 
algorithm: 
 
STFT: 
Input: audio signal  
1. Dividing a signal into windowed frames to create a “buffer” matrix 
2. Performing FFT on every windowed signal segment 
Output: Matrix of FFT vectors 
 
ISTFT: 
Input: Matrix of FFT vectors from STFT 
1. Performing IFFT on the input matrix 
2. Summing the resulting signals in overlap add fashion 
Output: audio signal 
 
Envelope: 
Input: Audio signal 
Output: A matrix of spectral envelopes 
 
Cross synthesis is achieved by the following procedure: 
Using two signals, called source and modulator (source is the music, modulator is 
speech) do the following: 
1. Perform STFT analysis of the source 
2. Perform Envelope analysis of the modulator 
3. Multiply the modulator STFT matrix by speech envelope matrix 
4. Perform ISTFT on the resulting matrix 
 
Details to be considered:   
The envelope has to be “smooth enough” so that its impulse response is short enough to 
avoid time-aliasing, as described in the Spectral Modifications section. 
 
Steps to fulfill the project: 

1. You will be provided a first sketch of the windowed buffering function winbuf.m 
The function creates a matrix where every column is a windowed segment of the 
original waveform. The signal contents in the columns overlap according to 
parameters specified in winbuf function. 

2. This function can be modified to create an OLA procedure that reconstructs the 
original sound samples from the buffer matrix. The input is the buffer and hop 
size. Name the function ola.m 

3. FFT can be used on the results of 1, or FFT can be performed on every column of 
the buffer in the winbuf loop. Write a new function called STFT can be written by 
modifying the function from 1 so that both buffering and FFT are performed in 
that one function. The size of the fft is an additional parameter. 



4. IFFT can be done on the output of step 3 (FFT) before step 2 (OLA) or can be 
written inside a function where IFFT is done first and OLA are done second. In 
such a case the size of the fft can be determined from the size of the columns of 
the input FFT matrix, but the parameters of the window size and overalp (or hop) 
need to be provided in order to produce successfully the OLA. This function 
should be named ISTFT. 

5. Read the help of lpc in MATLAB. When lpc function is applied to the buffer 
matrix (the output on winbuf) of the modulator signal, it produces a matrix of lp 
coefficients, where each column is an lpc of the corresponding windowed 
segment (a column of the buffer matrix). 

6. The spectrum of the lp filter is be obtained by taking the absolute value of the 
FFT of the lp coefficient matrix (again, FFT will operate on the columns). Since 
we are interested in spectral envelope that describes the amplitudes only, we 
remove the phase by taking an absolute value of the complex matrix that we got 
from the fft 

7. Calculate the spectral envelope as 1/(lp spectrum). Explanation: In previous step 
we got the spectrum of the prediction filter. As explained in the notes, this is the 
reciprocal of the spectral envelope. Write a function that combines step 5-7 into a 
one function Envelope. It receives signal as an input, window size, hop, nfft and 
size of lpc analysis. This function outputs a matrix of spectral envelopes. Call this 
output matrix ENV. This envelope operation is performed on the “modulator” 
signal. 

8. The ENV matrix is multiplied pointwise (.*) with the STFT of the “carrier signal” 
9. The resulting modified signal is inversed FFT’s (use ISTFT from step 4). 
10. Done! 

 
Submission instructions: 
1 - write the ola.m function and test it to show that winbuf and ola are inverse one of the 
other. 
2. write stft.m and istft.m and show that they are inverse of each other 
3. write envelope.m that performs lpc analysis  
4. make an xsynth program that calls stft, lpc, makes the modification and does istft 
 
Please zip and email the following to cdwarren@ucsd.edu by [due date] at midnight.  
[yourname]diary <---- diary of testing the different function and running xsynth 
[yourname]ola.m  <---- your cross synthesis code 
[yourname]stft.m <---- your stft code 
[yourname]istft.m <---- your istft code 
[yourname]envelope.m <---- your envelope code 
[yourname]xsynth.m      <---- your cross synthesis code 
[yourname]xsynth.wav  <---- a musical example using this code 
[yourname]sourcesound.wav <---- source sounds for xsynth 
[yourname]modulatorspeech.wav  
 
Please zip and email the following to cdwarren@ucsd.edu by May 1 at midnight. 
 


