
// filter shortcuts - derived from zolzer, chamberlin, stinson and tarrabia 

/* the simplest one pole
this is typically used for parameter smoothing.
if c is near 1.0, the out slowly moves to the new value (lowpass)
if c is near 0.0, the out follows the new value closely (passthru)
out = new * (1 - c) + out * c;

c can be calculated for a given frequency by
exp(-2.f*PI*cutoff/samplingRate);

get a highpass by subtracting in from out - 
*/

// moving forward
/*
 most filters have a section of code for setting the frequency, resonance and 
gain (calculating coefficients) and another section for filtering the audio 
(using those coefficients and saving internal state/delays)

it’s typical for the frequency/resonance to coefficient calculation to be 
more cpu intensive than the filtering of sound
*/
// first and second order filters derived from udo zolzer DAFX book
/*
 an allpass filter does not change the amplitude, but shifts the phase 180 at 
nyquist
adding the original signal to the output of this allpass results in a lowpass
*/

// first order allpass

void foAllpass::setFrequency(float f)
{
 tf = tan(pi * f/sampleRate);
 c = (tf -1.0f)/(tf + 1.0f);
}

float foAllpass::process(float in, float c)
{
 out = c * in + in1 - c * out;
 in1 = in;
 return(out);
}

// lowpass requires one more line of code

float foLowpass::process(float in, float c)
{
 out = c * in + in1 - c * out; // out is allpass
 out = in + out;
 in1 = in;
 return(out);
}
// highpass requires inverting the phaseshifted out

float foLowpass::process(float in, float c)
{



 out = c * in + in1 - c * out; // out is allpass
 out = in - out;
 in1 = in;
 return(out);
}

/* 
a second order allpass shifts the phase 360 at nyquist, so it is 180 
( inverted) somewhere in between
 second order allpass + input gives you band reject,
 input - allpass gives you band pass
 two coefficients are required (frequency and bandwidth)
*/

void soAllpass::setFrequency(float f, float bw)
{
 tf = tan(pi * bw/sampleRate);
 c = (tf -1.0f)/(tf + 1.0f);
 d = -cos(twopi * f/sampleRate);
}

float soAllpass::process(float in, float c)
{
 out = -c * in + d * (1.0f - c) * in1 + in2

-d * (1.0 - c) * out + c * out1;

 out1 = out;
 in2 = in1;
 in1 = in;
 return(out);
}

// like the first order example - bandpass and reject derived from allpass
float soBandpass::process(float in, float c)
{
 out = -c * in + d * (1.0f - c) * in1 + in2

-d * (1.0 - c) * out + c * out1;

 out1 = out;
 in2 = in1;
 in1 = in;
 out = in - out;
 return(out);
}

float soBandreject::process(float in, float c)
{
 out = -c * in + d * (1.0f - c) * in1 + in2

-d * (1.0 - c) * out + c * out1;

 out1 = out;
 in2 = in1;
 in1 = in;
 out = in + out;
 return(out);
}



/*
 at this point we have reached the complexity of a biquad -
 and there are many cookbook examples of how to compute
 the biquad coefficients. 
 here is one from patrice tarrabia from musicdsp for a butterworth lowpass
*/

BQLowpass::BQLowpass()
{
 A1 = A2 = A3 = 0.0;
 B1 = B2 = 0.0;
 X1 = X2 = Y1 = Y2 = 0.0;
 Pi = 4.0 * atan(1.0);
}

BQLowpass::~BQLowpass()
{}

BQLowpass::SetFilter(float frequency, float resonance)
{
 float C, f0;
 
 if(resonance > sqrt(2.0))
  resonance = sqrt(2.0);
 if(resonance < 0.1)
  resonance = 0.1;
 if(frequency > sampleRate * 0.5)
  frequency = sampleRate * 0.5;
  
 f0 = frequency/sampleRate;
 if(f0 < 0.1) 
  C = 1.0 / (f0 * Pi);
 else 
  C = tan((0.5 - f0) * Pi);

 A1 = 1.0 / ( 1.0 + resonance * C + C * C);
 A2 = 2.0 * A1;
 A3 = A1;
 B1 = 2.0 * ( 1.0 - C * C) * A1;
 B2 = ( 1.0 - resonance * C + C * C) * A1;
}

BQLowpass::FilterBlock(float *input, float *output, long samplePerBlock)
{
 long sample;
 
 for(sample = 0; sample < samplesPerBlock; sample++)
 {
  *(output + sample) = A1 * *(input + sample)
   + A2 * X1 + A3 * X2 - B1 * Y1 - B2 * Y2;
   
  X2 = X1;
  X1 = *(input + sample);
  Y2 = Y1;
  Y1 = *(output + sample);
 }
}



/* 
the moog filter concatenates 4 single pole filters. these single pole filters 
are similar to the first order lowpass we derived from the allpass. in 
addition, there is a feedback around all 4 filters to add resonance.
this is tim stilson’s code from ccrma
*/

/* 
a gain table is used so that resonance breaks into oscillation similarly for 
all frequencies
*/

static float gaintable[199] = { 0.999969, 0.990082, 0.980347, 0.970764, 
0.961304, 0.951996, 0.94281, 0.933777, 0.924866, 0.916077, 0.90741, 0.898865, 
0.890442, 0.882141 , 0.873962, 0.865906, 0.857941, 0.850067, 0.842346, 
0.834686, 0.827148, 0.819733, 0.812378, 0.805145, 0.798004, 0.790955, 
0.783997, 0.77713, 0.770355, 0.763672, 0.75708 , 0.75058, 0.744141, 0.737793, 
0.731537, 0.725342, 0.719238, 0.713196, 0.707245, 0.701355, 0.695557, 
0.689819, 0.684174, 0.678558, 0.673035, 0.667572, 0.66217, 0.65686, 0.651581, 
0.646393, 0.641235, 0.636169, 0.631134, 0.62619, 0.621277, 0.616425, 
0.611633, 0.606903, 0.602234, 0.597626, 0.593048, 0.588531, 0.584045, 
0.579651, 0.575287 , 0.570953, 0.566681, 0.562469, 0.558289, 0.554169, 
0.550079, 0.546051, 0.542053, 0.538116, 0.53421, 0.530334,0.52652, 0.522736, 
0.518982, 0.515289, 0.511627, 0.507996 , 0.504425, 0.500885, 0.497375, 
0.493896, 0.490448, 0.487061, 0.483704, 0.480377, 0.477081, 0.473816, 
0.470581, 0.467377, 0.464203, 0.46109, 0.457977, 0.454926, 0.451874, 
0.448883, 0.445892, 0.442932, 0.440033, 0.437134, 0.434265, 0.431427, 
0.428619, 0.425842, 0.423096, 0.42038, 0.417664, 0.415009, 0.412354, 
0.409729, 0.407135, 0.404572, 0.402008, 0.399506, 0.397003, 0.394501, 
0.392059, 0.389618, 0.387207, 0.384827, 0.382477, 0.380127, 0.377808, 
0.375488, 0.37323, 0.370972, 0.368713, 0.366516, 0.364319, 0.362122, 
0.359985, 0.357849, 0.355713, 0.353607, 0.351532, 0.349457, 0.347412, 
0.345398, 0.343384, 0.34137, 0.339417, 0.337463, 0.33551, 0.333588, 0.331665, 
0.329773, 0.327911, 0.32605, 0.324188, 0.322357, 0.320557, 0.318756, 
0.316986, 0.315216, 0.313446, 0.311707, 0.309998, 0.308289, 0.30658, 
0.304901, 0.303223, 0.301575, 0.299927, 0.298309, 0.296692, 0.295074, 
0.293488, 0.291931, 0.290375, 0.288818, 0.287262, 0.285736, 0.284241, 
0.282715, 0.28125, 0.279755, 0.27829, 0.276825, 0.275391, 0.273956, 0.272552, 
0.271118, 0.269745, 0.268341, 0.266968, 0.265594, 0.264252, 0.262909, 
0.261566, 0.260223, 0.258911, 0.257599, 0.256317, 0.255035, 0.25375 };

void moogFilter::setFrequency(float freq, float reson)
{
 f = 2.0 * f freq/sampleRate;
    
 //code for setting pole coefficient based on frequency
 moogP = -0.69346*f*f*f - 0.59515*f*f + 3.2937*f - 1.0072; 
 //cubic fit by DFL, not 100% accurate but better than nothing...

 //code for setting Q
 index = moogP * 99;
 indexInt = floor(index);
 indexFrac = index - indexInt;
 moogQ = reson * 
  ((1.0 - indexFrac) * gaintable[indexInt + 99] 

+ indexFrac * gaintable[indexInt + 100]) * 1.2f;

}



float moogFilter::process(float in)
{

 out = 0.25f * ( in - out ); //negative feedback
 for(int pole = 0; pole < 4; pole++) 
 {
  float temp;
  temp = state[pole];
  out = saturate( out + moogP * (out - temp));
  state[pole] = out;
  out = saturate( out + temp );
 }
}

/*
a state variable filter has two integrators feeding back into each other, and 
a network that derives all 4 filter types simultaneously
this is derived from the BASIC code in hal chamberlain’s musical applications 
of microprocessors. damping and freqCoef are limited to keep filter more 
stable
*/

SVFilter::ProcessBlock(float *input, float *output, long samplesPerBlock, 
float frequency, float resonance, float drive)
{
 long sample;
 float in, out;
 float freqCoef, damping;
 
 freqCoef = 2.0*sin(pi * (frequency/sampleRate)));
 if(freqCoef > 0.5)
  freqCoef = 0.5;

 damping = 2.0*(1.0 - pow(resonance, 0.25));
 if(damping > 2.0)
  damping = 2.0;
 if(damping > (2.0/freqCoef - (freqCoef * 0.5)))
  damping = 2.0/freqCoef - (freqCoef * 0.5);
 
 for (sample=0; i<samplesPerBlock; sample++)
 {
   in    = *(input+i); 
   
   notchOut = in - (damp * bandOut);
   lowOut   = lowOut + (freqCoef * bandOut);
   highOut  = notchOut - lowOut;
   bandOut  = bandOut + (freqCoef * highOut);
      
   output[i] = lowOut;
 }
}


