Music 171: Additive Synthesis

Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD)

October 22, 2019

Adding Sinusoids at Different Frequencies

 Adding sinusoids of the same frequency produces another sinusoid at that frequency (with possibly different amplitude and/or phase).

Figure 1: Adding 2 sinusoids at different frequencies.

 Adding sinusoids with different frequencies results in a signal that is no longer sinusoidal. But is it periodic?

A Non-Sinusoidal Periodic Signal

• If the frequencies of the added sinusoids are integer multiples of the fundamental, the resulting signal will be periodic.

Figure 2: Adding sinusoids at 3, 6, 9 Hz produces a periodic signal at 3 Hz.

• Sinusoidal components, or *partials* that are integer multiples of a fundamental are calle *harmonics*.

Viewing in the Frequency Domain

• When viewing in the frequency domain, a "spike" at a frequency indicates there is a sinusoid in the signal at that frequency.

Figure 3: Adding sinusoids at 5, 10, 15 Hz in both time and frequency domain.

- The height of the spike here, indicates the amplitude (thus all sinusoids here have a peak amplitude of 1).
- The harmonic relationship between the partials can be seen by the even spacing between the "spikes".

Periodic Waveforms

- A periodic waveform corresponds to a *harmonic spectrum*, one where sinusoidal components are *integer multiples* of a fundamental frequency.
- Periodic waveforms, or *harmonic* sounds, may be thought of as those having a pitch.
- "Standard" periodic waveforms: *square*, *triangle* and *sawtooth*, can be created using additive synthesis:

Creating Standard Periodic Waveforms

• The following table gives the *harmonic number*, relative *amplitude* and *phase* of the harmonics for standard waveforms.

Туре	Harmonics	Amplitude	Phase (cosine)	Phase (sine)
square	n = [1, 3, 5,, N] (odd)	1/n	$-\pi/2$	0
triangle	n = [1, 3, 5,, N] (odd)	$1/n^{2}$	0	$\pi/2$
sawtooth	n = [1, 2, 3,, N] (even and odd)	1/n	$-\pi/2$	0

Table 1: Other Simple Waveforms Synthesized by Adding Sinusoids

• Notice that the phase differs depending on whether you use a sine or cosine function.

Figure 4: Spectra of complex waveforms

- Notice that even though these new waveforms contain more than one frequency component, they are still periodic.
- Because the frequencis of components are **integer multiples** of some fundamental frequency, they are called *harmonics*.
- Signals with harmonic spectra have a fundamental frequency and therefore have a periodic waveform (the reverse is, of course, also true).
- Pitch is our subjective response to the fundamental frequency.
- The relative amplitudes of the harmonics contribute to the *timbre* of a sound, but do not necessarily alter the *pitch*.

Clarinet Analysis

- A clarinet is generally considered to be closed-open.
- Its tone (shown here in the steady state) can be viewed in both time and frequency domain.

Figure 5: Frequency analysis of a clarinet note.

• Summing sinusoids at 145, 433 and 732 Hz (as well as others), can approximate a synthesis of the clarinet (in the steady state).

Additive Synthesis

• Discrete signals (bandlimited by half the sampling rate) may be represented as the sum of N sinusoids of arbitrary amplitudes, phases, AND frequencies:

$$x(t) = \sum_{k=0}^{N} A_k \cos(\omega_k t + \phi_k)$$

- We may therefore, synthesize a sound by setting up a bank of oscillators, each set to the appropriate amplitude, phase and frequency.
- The output of each oscillator is added to produce a synthesized sound, and thus the synthesis technique is called *additive synthesis*.

Additive Synthesis Pros and Cons

Pros

- Additive synthesis provides the maximum flexibility in the types of sound that can be synthesized.
- In certain cases, it can realize tones that are "indistinguishable from real tones."

Cons

- It is often necessary to do *signal analysis* before using additive synthesis to produce specific sounds.
- Often requires many oscillators to produce good quality sounds—computationally demanding!
- Attacks difficult.
- Many functions are useful only for a limited range of pitch and loudness, e.g.:
 - the timbre of a piano played at A4 is different from one played at A2;
 - the timbre of a trumpet played loudly is quite different from one played softly at the same pitch.

Modeling Transient Attacks

- It is possible to use some knowledge of acoustics to determine functions:
 - e.g.: higher frequency harmonics are often the last to appear in the attack but the first to decay.
 - implement using a separate envelope on each harmonic with a steeper attack/decay for lower frequencies.
- The duration of the attack and decay greatly influence the quality of a tone:
 - wind instruments tend to have long attacks, while
 - percussion instruments tend to have short attacks.

ADSR Envelope

 Recall the ADSR envelope (attack, decay, sustain, release) is an envelope that attempts to mimic the behaviour of sound produced by acoustic instruments.

Figure 6: An ADSR envelope.

• Amplitude envelopes can occur on the overal sound or on individual sinusoidal components.

Figure 7: A sinusoid with an amplitude envelope.

Pitch and Frequency

- There is a nonlinear relationship between pitch perception and frequency.
 - e.g., the pitch interval of an octave corresponds to a frequency ratio of 2:1.
 - thus octaves in higher registers span more frequencies
- We will often encounter a pitch notation wich designates a pitch with an octave: C4 is middle C.
- The pitch A4 or "A440" is often used as a reference, and is an A at 440 Hz.
- What is the frequency one octave below A440?
- In equal-tempered tuning, there are 12 evenly spaced tones in an octave, called semi-tones:

 $- \mbox{ The frequency } n \mbox{ semitones above A440 is }$

 $440 \times 2^{n/12}$ Hz.

 $- \mbox{ The frequency } n \mbox{ semitones below A440 is }$

 $440 \times 2^{-n/12}$ Hz.