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Adding Sinusoids

• Adding sinusoids having frequencies that are

– the same, produces another sinusoid at that
frequency;

– different, produces a signal that is no longer
sinusoidal;

– integer multiples of a fundamental
frequency f0, produces a signal with period 1/f0.
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• Sinusoidal components that are integer multiples of a
fundamental frequency are called harmonics.
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A Note on Pitch and Frequency

• Generally, harmonic sounds are those for which we
hear a pitch (you can hum them).

• Scientific pitch notation combines a note name
with an octave number:

– C4 is middle C;

– A4 or A440 (440 Hz) is in the same octave (above)
middle C and is often used as a reference tone.

• Recall, in equal-tempered tuning, there are 12 evenly
spaced tones (semitones) in an octave,

– The frequency n semitones above/below A440 is

440× 2±n/12 Hz.
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Summing Sinusoids Close in Frequency

• What happens when we two sinusoids having
frequencies that are not harmonically related?

• Consider the sum of two sinusoids close in frequency:
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Figure 1: Sinusoids at 18 and 22 Hz.
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An (non-linear) Amplitude Envelope

• Adding these two sinudoids produces a (seemingly)
sinusoidal signal.

• But constructive/destructive interference imposes a
(nonlinear) amplitude envelope.
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Figure 2: Sinusoids at 18 and 22 Hz.
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Beat Notes

• Zooming out further, we see a sinusoid with a
low-frequency sinusoidal amplitude envelope.
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Figure 3: Sinusoids at 18 and 22 Hz.

• An audio version of this note (with frequencies at 218
and 222 Hz) can be heard here.

• The result is a sound that comes in and out of
prominance, usually described as beating.

• Why does this effect occur?
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Multiplication of Sinusoids

• To apply an envelope on a signal, the envelope is
multiplied by the signal.

• The results then suggest that adding two sinusoids
close in frequency is the same as multiplying two
sinusoids, in this case, one low-frequency.

• This can be shown mathematically to be true!

• Cosine Product formula,

cos(a) cos(b) =
cos(a + b) + cos(a− b)

2
,

we can show that

x(t) = cos(2π(220)t) cos(2π(2)t)

=
1

2
[cos(2π(222)t) + cos(2π(218)t)] .
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Beat Spectrum

• Sinusoidal multiplication can therefore be expressed
as addition
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Figure 4: Beat note waveform and spectrum from adding sinusoids at 218 Hz and 222 Hz.

• Spectral frequencies are not those of the multiplied
sinusoids (2 and 220 Hz), but their

– sum: 220 + 2 = 222 Hz and

– difference: 220 - 2 = 118 Hz.
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Amplitude Modulation

• Modulation is the alteration of the amplitude,
phase, or frequency of an oscillator by another signal.

• Carrier: the oscillator being modulated

• Modulator: the altering signal

• The spectral components generated by a modulated
signal are called sidebands (or heterodynes).

• Three main techniques of amplitude modulation are:

– Ring modulation

– “Classical” amplitude modulation

– Single-sideband modulation

(we will not discuss the last one).
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Ring Modulation

• Ring modulation (RM) (e.g. beat note): modulator is
applied directly to the amplitude of the carrier:

x(t) = cos(2πf∆t) cos(2πfct).

• Results in the sum of sinusoids:

x(t) =
1

2
cos(2π(fc − f∆)t) +

1

2
cos(2π(fc + f∆)t),
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Figure 5: Spectrum of ring modulation.

• Neither carrier nor modulator are in the spectrum.

• Sometimes called double-sideband (DSB) modulation
because of 2 produced sidebands.
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Double Sideband Modulation

• RM can be realized by multiplying any two signals
together (not just oscillators).

• Total number of frequency components:

Ntotal = 2×N1 ×N2

(2 times the product of the number of components
in each signal).
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“Classic” Amplitude Modulation

• Classic amplitude modulation (AM) is more general.

• Modulating signal includes a constant (DC offset):

x(t) = (A0 + cos(2πf∆t)) cos(2πfct),

(where the first term is the modulating signal.)

• DC component >= 1 makes the modulating signal
unipolar, i.e., the entire signal is greater than zero.
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Figure 6: A unipolar signal.
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Effects of the DC component

• Multiplying out the above equation, we obtain

x(t) = A0 cos(2πfct) + cos(2πf∆t) cos(2πfct).

• The carrier frequency is now present in the spectrum.

• The second term can be expanded in the same way as
was done for RM (i.e. the sidebands are identical).
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Figure 7: Spectrum of amplitude modulation.
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RM and AM Spectra

• Sidebands are identical, but AM has center frequency
fc in the spectrum.
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Figure 8: Spectrum of amplitude modulation.
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Figure 9: Spectrum of ring modulation.

• A DC offset in the modulator results in a spectrum
with the carrier frequency fc, at an amplitude equal
to A0.

Music 171: Amplitude Modulation 14



RM and AM waveforms

• Waveforms for AM and RM showing effect of DC
offset in the modulator:
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Figure 10: Amplitude and ring modulation.
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Review 1
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• What is the Period?

• What is the Frequency?

• Which is the most likely spectrum?
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Review 2
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• What is the Period?

• What is the Frequency?

• Which is the most likely spectrum?
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Review 4

• Provide frequencies, harmonic number and amplitude
for components above .2 (for use in additive
synthesis):
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Review 4

• Match waveform and spectrum:
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• Express as product and sum.
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