Constant Overlap Add (COLA)

Mathematical definition of the Short-time Fourier Transform (STFT) is given by

$\displaystyle X_m(\omega) = \sum_{n=-\infty}^{\infty}x(n)w(n-mR)e^{-j\omega n},
$

where $ R$ is the hopsize, and $ m$ is the length of the window.

The window used in the STFT, $ w(n)$, must satisfy the Constant Overlap-Add (COLA) property:

$\displaystyle \sum_{m=-\infty}^{\infty}w(n-mR) = 1.
$

If COLA is satisfied, then the sum of successive DTFTs over time equals the DTFT of the whole signal $ X(\omega)$, that is:

$\displaystyle \sum_{m=-\infty}^{\infty}X_m(\omega)$ $\displaystyle \triangleq$ $\displaystyle \sum_{m=-\infty}^{\infty}\sum_{n=-\infty}^{\infty}x(n)w(n-mR)e^{-j\omega n}$  
  $\displaystyle =$ $\displaystyle \sum_{n=-\infty}^{\infty}x(n)e^{-j\omega n}\sum_{m=-\infty}^{\infty}w(n-mR)$  
  $\displaystyle =$ $\displaystyle \sum_{n=-\infty}^{\infty}x(n)e^{-j\omega n} = X(\omega),$   if COLA.  

Rectangle window is COLA if there is no overlap. Bartlett window, and all the Hamming family are COLA with 50 % overlap (when end points are handled correctly).


``Music 270a: Signal Analysis'' by Tamara Smyth, Department of Music, University of California, San Diego.
Download PDF version (analysis.pdf)
Download compressed PostScript version (analysis.ps.gz)
Download PDF `4 up' version (analysis_4up.pdf)
Download compressed PostScript `4 up' version (analysis_4up.ps.gz)

Copyright © 2019-12-02 by Tamara Smyth.
Please email errata, comments, and suggestions to Tamara Smyth<trsmyth@ucsd.edu>