Music 171: Computer Music I
 Assignment \#3,
 Due: Friday October 25, 2019

In this assignment, you will make a Pd patch that can play a 12 note chromatic scale (above and below the original pitch or your sample) using a saxophone wavetable loaded from the wavefile SopSax.NoVib.ff.C4.

Play a single note from your scale by selecting a number, between -12 and 12 , that specifies the number of semitones above/below the original pitch. Since the phasor repeats, make sure to turn on/off (by scaling amplitude) using your calculated sample duration. Transposing the wavetable will change its duration (e.g. 12 semitones above the original pitch is a transposition factor of 2 and will half the original duration). Make sure to turn the note on/off with this new duration.

BONUS: use the counter (from previous assignment) to play the scale automatically.

1. Read the wavefile to an array (remember the resize flag) using the soundfiler object. The output of soundfiler will give you the length of the wavefile in samples N and the sampling rate f_{s} which you can use to calculate the original sample duration.
2. Take the inverse of the duration to calculate the original (untransposed) phasor frequency f.
3. For an initial test, listen to sound at original pitch/duration:
(a) put f into the left inlet of phasor ${ }^{\sim}$;
(b) multiply output of phasor \sim by N;
(c) use output of multiply as (left) input to tabread4~ (with array name as argument);
(d) multiply output of tabread4~ by on/off values (initially set to on if you want to hear your sound) and input to dac~ object.
4. Change pitch:
(a) use a number box h to specify semitones above/below original pitch;
(b) divide h by 12 and put result into right inlet of pow object;
(c) the left inlet of pow should have a message box with value 2 that is "banged" every time a new value of h is produced, outputting a transposition factor t;
(d) multiply t with original phasor frequency f and make this the new (left) input to phasor ${ }^{\sim}$.
5. Update new duration, and turn on/off automatically (so it doesn't repeat/loop)
(a) invert transposition factor t (using pow -1) to produce duration factor d;
(b) multiply d with original duration and 1000 (to produce milliseconds) and input (left) into delay object; use output of delay to turn sound off;
(c) connect h to message that turns sound on, as well as to a 0 -message that reset's the phasor's phase.
6. Try BONUS using counter from last assignment (in addition to, and not in lieu of, the previous steps) to automatically play a 2 -octave scale.

Submit on TritonEd.

