
Music 171: Computer Music I
Assignment #4,

Due: Friday, November 1, 2019

This assignment is to make a Pd patch that implements additive synthesis and an ADSR envelope
while synthesizing 2 clarinet-like sounds:

1. use analysis plot available in the lecture slides to obtain actual frequency and amplitude values of
sinusoidal components in the sound;

2. use theoretical harmonics (every odd harmonic) each having an amplitude of one over its harmonic
number (like a square wave);

Consider the following steps when making your patch:

1. Your additive synthesizer should have at least 5 (but no more than 10) sinusoidal oscillators created
using the osc∼ object. The frequencies may be set using a single message that is unpacked (using
the unpack object).

2. For theoretical synthesis, calculate the frequency of each oscillator according to some fundamental
(sounding) frequency and its harmonic number. Changing the fundamental will change the pitch.

3. The output of each oscillator should be multiplied by an ASR envelope, defined with a single message
having 3 values: the duration (ms) of the attack (A), sustain (S) and release (R) segments. The attack
goes to level 1 and the whole envelope can be scaled at the output. The ASR should be created as
an abstraction1:

• it should take a single message as its input (through an inlet) with 3 values for A, S, and R;

• unpack (using the unpack object), and send values where needed;

• use a single line~ object with a message implementing the attack (A) or “fade in”, and the
release (R) or “fade out”.

• use a single delay object to trigger the release after the sum of attack and sustain times;

• hint: you will likely need a float object to hold the R value, so that it doesn’t trigger the
release before the “bang” from the delay.

4. Apply an ASR (with different parameters) to each oscillator before summing them to a final output.
A general rule of thumb is that higher frequencies take longer to reach their steady state and are the
first to decay (i.e. longer fade in and out for higher frequencies).

1to be discussed further in class, an abstraction is a way to avoid duplicating code/objects

1


