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Exponentials

• The exponential function is typically used to describe
the natural growth or decay of a system’s state.

• An exponential function is defined as

x(t) = e−t/τ ,

where e = 2.7182..., and τ is the characteristic
time constant, the time it takes to decay by 1/e.
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Figure 1: Exponentials with characteristic time constants, .1, .2, .3, .4, and .5

• Both exponential and sinusoidal functions are aspects
of a slightly more complicated function.
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Complex numbers

• Complex numbers provides a system for

1. manipulating rotating vectors, and

2. representing geometric effects of common digital
signal processing operations (e.g. filtering), in
algebraic form.

• In rectangular (or Cartesian) form, the complex
number z is defined by the notation

z = x + jy.

• The part without the j is called the real part, and
the part with the j is called the imaginary part.
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Complex Numbers as Vectors

• A complex number can be drawn as a vector, the tip
of which is at the point (x, y), where

x , the horizontal coordinate—the real part,

y , the vertical coordinate—the imaginary part.
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r

θ

z = x+ jy = rejθ

Figure 2: Cartesian and polar representations of complex numbers in the complex plane.

• Thus, the x- and y-axes may be referred to as the
real and imaginary axes, respectively.

• A multiplication by j may be seen as an operation
meaning “rotate counterclockwise 90◦ or π/2
radians”.

• Two successive rotations by π/2 bring us to the
negative real axis (j2 = −1), and thus j =

√
−1.
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Polar Form

• A complex number may also be represented in polar
form

z = rejθ,

where the vector is defined by its

1. length r, and

2. direction θ (angle with horizontal real x-axis).

• The length of the vector is also called the magnitude
of z (denoted |z|), that is

|z| = r.

• The angle with the real axis is called the argument of
z (denoted arg z), that is

arg z = θ.
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Converting from Cartesian to Polar
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z = x+ jy = rejθ

Figure 3: Cartesian and polar representations of complex numbers in the complex plane.

• Using trigonometric identities and the Pythagorean
theorem, we can compute:

1. The Cartesian coordinates(x, y) from the polar
variables r∠θ:

x = r cos θ and y = r sin θ

2. The polar coordinates from the Cartesian:

r =
√

x2 + y2 and θ = arctan
(y

x

)
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Projection and Sinusoidal Motion

• Recall from our previous section on sinusoids that the
projection of a rotating sinusoid on the x− and y−
axes, traces out a cosine and a sine function
respectively.
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Figure 4: Projection on the x− and y− axis.
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Euler’s Formula

• From the result of sinusoidal projection, we can see
how Euler’s famous formula for the complex
exponential was obtained:

ejθ = cos θ + j sin θ,

valid for any point (cos θ, sin θ) on a circle of radius
one (1).

• Euler’s formula can be further generalized to be valid
for any complex number z:

z = rejθ = r cos θ + jr sin θ.

• Though called “complex”, these number usually
simplify calculations considerably—particularly in the
case of multiplication and division.
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Complex Exponential Signals

• The complex exponential signal (or complex sinusoid)
is defined as

x(t) = Aej(ω0t+φ).

• It may be expressed in Cartesian form using Euler’s
formula:

x(t) = Aej(ω0t+φ)

= A cos(ω0t + φ) + jA sin(ω0t + φ).

• As with the real sinusoid,

– A is the amplitude given by |x(t)|

|x(t)| ,

√

re2{x(t)} + im2{x(t)}

≡
√

A2[cos2(ωt + φ) + sin2(ωt + φ)]

≡ A for all t

(since cos2(ωt + φ) + sin2(ωt + φ) = 1).

– φ is the initial phase

– ω0 is the frequency in rad/sec

– ω0t + φ is the instantaneous phase, also denoted
arg x(t).
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Real and Complex Exponential Signals

How does the Complex Exponential Signal
compare to the real sinusoid?

• As seen from Euler’s formula, the sinusoid given by
A cos(ω0t + φ) is the real part of the complex
exponential signal. That is,

A cos(ω0t + φ) = re{Aej(ω0t+φ)}.

• Recall that sinusoids can be represented by the sum
of in-phase and phase-quadrature components.

A cos(ω0t + φ) = re{Aej(ω0t+φ)}
= re{Aej(φ+ω0t)}
= Are{ejφejω0t}
= Are{(cosφ + j sinφ) (cos(ω0t) + j sin(ω0t))}
= Are{cosφ cos(ω0t)− sinφ sin(ω0t)

+j(cosφ sin(ω0t) + sinφ cos(ω0t))}
= A cosφ cos(ω0t)− A sinφ sin(ω0t).
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Inverse Euler Formulas

• The inverse Euler formulas allow us to write the
cosine and sine function in terms of complex
exponentials:

cos θ =
ejθ + e−jθ

2
,

and

sin θ =
ejθ − e−jθ

2j
.

• This can be shown by adding and subtracting two
complex exponentials with the same frequency but
opposite in sign,

ejθ + e−jθ = cos θ + j sin θ + cos θ − j sin θ

= 2 cos θ,

and

ejθ − e−jθ = cos θ + j sin θ − cos θ + j sin θ

= 2j sin θ.

• A real cosine signal is actually composed of two
complex exponential signals:

1. one with a positive frequency

2. one with a negative frequency
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Complex Conjugate

• The complex conjugate z of a complex number
z = x + jy is given by

z = x− jy.

• A real cosine can be represented in the complex plane
as the sum of two complex rotating vectors (scaled by
1/2) that are complex conjugates of each other.
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• The negative frequencies that arise from the complex
exponential representation of the signal, will greatly
simplify the task of signal analysis and spectrum
representation.
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Conjugate Symmetry (Hermitian)

• A complex sinusoid ejωt consists of one frequency ω.

• A real sinusoid sin(ωt) consists of two frequencies ω
and −ω.

• Every real signal, therefore, consists of an equal
contribution of positive and negative frequency
components.

• If X(ω) denotes the spectrum of the real signal x(t),
then X(ω) is conjugate symmetric (Hermitian),
implying

|X(−ω)| = |X(ω)|
and

∠X(−ω) = −∠X(ω)

• It is sometimes easier to use the “less complicated”
complex sinusoid when doing signal processing.

• Negative frequencies in a real signal may be “filtered
out” to produce an analytic signal, a signal which has
no negative frequency components.
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Analytic Signals

• The real sinusoid x(t) = A cos(ωt + φ) can be
converted to an analytic signal, by generating a
phase quadrature component,

y(t) = A sin(ωt + φ),

to serve as the imaginary part.

1. Consider the positive and negative frequency
components of a real sinusoid at frequency ω0:

x+ , ejω0t

x− , e−jω0t.

2. Apply a phase shift of −π/2 radians to the
positive-frequency component,

y+ = e−jπ/2ejω0t = −jejω0t

and a phase shift of π/2 to the negative-frequency
component,

y− = ejπ/2e−jω0t = je−jω0t.

3. Form a new complex signal by adding them
together:

z+(t) , x+(t) + jy+(t) = ejω0t − j2ejω0t = 2ejω0t

z−(t) , x−(t) + jy−(t) = e−jω0t + j2e−jω0t = 0.
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Hilbert Transform Filters

• For more complicated signals (which are the sum of
sinusoids), the Hilbert Transform may be used to shift
each sinusoidal component by a quarter cycle.

• When a real signal x(t) and its Hilbert transform
y(t) = Ht{x} are used to form a new complex signal

z(t) = x(t) + jy(t),

the signal z(t) is the (complex) analytic signal
corresponding to the real signal x(t).

• Problem: Given the modulated signal

x(t) = A(t) cos(ωt).

How do you obtain A(t) without knowing ω?

Answer: Use the Hilbert tranform to generate the
analytic signal

z(t) ≈ A(t)ejωt,

and then take the absolute value

A(t) = |z(t)|.
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Complex Amplitude or Phasor

• When two complex numbers are multiplied, their
magnitudes multiply and their angles add:

r1e
jθ1r2e

jθ2 = r1r2e
j(θ1+θ2).

• If the complex number X = Aejφ is multiplied by the
complex exponential signal ejω0t, we obtain

x(t) = Xejω0t = Aejφejω0t = Aej(ω0t+φ).

• The complex number X is referred to as the
complex amplitude, a polar representation of the
amplitude and the initial phase of the complex
exponential signal.

• The complex amplitude is also called a phasor as it
can be represented graphically as a vector in the
complex plane.
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Spectrum Representation

• Recall that summing sinusoids of the same frequency
but arbitrary amplitudes and phases produces a new
single sinusoid of the same frequency.

• Summing several sinusoids of different frequencies will
produce a waveform that is no longer purely
sinusoidal.

• The spectrum of a signal is a graphical
representation of the frequency components it
contains and their complex amplitudes.

• Consider a signal that is the sum of N sinusoids of
arbitrary amplitudes, phases, AND frequencies:

x(t) = A0 +
N
∑

k=1

Ak cos(ωkt + φk)
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Spectrum Representation cont.

• Using inverse Euler, this signal may be represented as

x(t) = A0 +

N
∑

k=1

{

Xk

2
ejωkt +

Xk

2
e−jωkt

}

.

• Every signal therefore, can be expressed as a linear
combination of complex sinusoids.

• If a signal is the sum of N sinusoids, the spectrum
will be composed of 2N + 1 complex amplitudes and
2N + 1 complex exponentials of a certain frequency.
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7e−jπ/3
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Figure 5: Spectrum of a signal with N = 2 components.
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Why are phasors important?

• Linear Time Invariant (LTI) systems perform only four
(4) operations on a signal: copying, scaling, delaying,
adding.

• The output of an LTI system therefore is always a
linear combination of delayed copies of the input
signal(s).

• In a discrete time system, any linear combination of
delayed copies of a complex sinusoid may be
expressed as

y(n) =
N
∑

i=1

gix(n− di)

where gi is the i
th weighting factor, di is the i

th

delay, and
x(n) = ejωnT .
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Linear Time Invariant Systems

• Notice, the “carrier term” x(n) = ejωnT can be
factored out to obtain

y(n) =

N
∑

i=1

gix(n− di)

=
N
∑

i=1

gie
j[ω(n−di)T ]

=
N
∑

i=1

gie
jωnTe−jωdiT

= x(n)

N
∑

i=1

gie
−jωdiT ,

showing an LTI system can be reduced to a
calculation involving only the sum phasors.

• Since every digital signal can be expressed as a linear
combination of complex sinusoids, this analysis can be
applied to any digital signal.
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Signals as Vectors

• For the Discrete Fourier Transform (DFT), all signals
and spectra are length N :

– signal x(n) may be real or complex, where
n = 0, 1, ...N − 1.

• We may regard x as a vector x in an N dimensional
vector space. That is, each sample x(n) is regarded
as a coordinate in that space.

• Mathematically therefore, a vector x is a single point
in N-space, represented by a list of coordinates
(x(0), x(1), x(2), ..., x(N − 1).
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Figure 6: A length 2 signal plotted in 2D space.
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Projection, Inner Product and the DFT

• The coefficient of projection of a signal x onto
another signal y:

– “a measure of how much y is present in x”

– is computed using the inner product 〈x, y〉:

〈x, y〉 ,
N−1
∑

n=0

x(n)y(n).

• The vectors (signals) x and y are said to be
orthogonal if 〈x, y〉 = 0:

x ⊥ y ⇔ 〈x, y〉 = 0

• Consider the projection of
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Figure 7: Two orthogonal vectors for N = 2

〈x, y〉 = 1 · 1 + 1 · (−1) = 0.
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Orthogonality of Sinusoids

• Sinusoids are orthogonal at different frequencies if
their durations are infinite.

• For length N sampled sinusoidal segments,
orthogonality holds for the harmonics of the sampling
rate divided by N, that is for frequencies

fk = k
fs
N
, k = 0, 1, 2, 3, ..., N − 1.

• These are the only frequencies that have a whole
number of periods in N samples.

• The complex sinusoids corresponding to the
frequencies fk are

sk(n) , ejωknT , ωk , k
2π

N
fs, k = 0, 1, 2, ..., N − 1.

These sinusoids are generated by the N th roots of

unity in the complex plane, so called since

[ejωkT ]N = [ejk2π/N ]N = ejk2π = 1.
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DFT Sinusoids

• The N th roots of unity are plotted below for N = 8.
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ejω2T = ej4π/N = ejπ/2 = j

ejω0T = 1

ejω1T = ej2π/N = ejπ/4

• The sampled sinusoids corresponding to the N roots
of unity are given by (ejωkT )n = ej2πkn/N , and are
used by the DFT.

• Taking successively higher integer powers of the root
ejωkT on the unit circle, generates samples of the kth
DFT sinusoid.

• Since each sinusoid is of a different frequency and
each is a harmonic of the sampling rate divided by N ,
the DFT sinusoids are orthogonal.
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DFT

• Recall, one signal y(·) is projected onto another
signal x(·) using an inner product defined by

〈y, x〉 ,
N−1
∑

n=0

y(n)x(n)

• If x(n) is a sampled, unit amplitude, zero-phase,
complex sinusoid,

x(n) = ejωknT , n = 0, 1, . . . , N − 1,

then the inner product computes the Discrete Fourier
Transform (DFT).

〈y, x〉 ,

N−1
∑

n=0

y(n)x(n)

=

N−1
∑

n=0

y(n)e−jωknT

, DFTk(y) , Y (ωk)

• Y (ωk), the DFT at frequency ωk, is a measure of the
amplitude and phase of the complex sinusoid which is
present in the input signal x at that frequency.
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Final DFT and IDFT

• The DFT is most often written

X(ωk) ,
N−1
∑

n=0

x(n)e−j 2πknN , k = 0, 1, 2..., N − 1.

• The IDFT is normally written

x(n) =
1

N

N−1
∑

k=0

X(ωk)e
j 2πknN .
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Between the DFT Bins

• Recall that DFT sinusoids are integer multiples of the
sampling rate divided by N

fk = k
fs
N
, k = 0, 1, 2, ..., N − 1.

• The DFT sinusoids are the only frequecies that have a
whole number of periods in N samples.

• Consider the periodic extension of a sinusoid lying
between DFT bins (see Matlab script betweenBins.m).

• Notice the “glitch” in the middle where the signal
beings its forced repetition. This results in spectral
“artifacts”.
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Zero-padding

• This problem can be handled, to some extent, by
increasing the resolution of the DFT—increasing N
by appending zeros to the input signal.
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Figure 9: Spectral effect of zero padding.
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Windowing

• To further improve the output of the DFT, it is
desirable to apply a window, to reduce the effects of
the “glitch”.

• Applying no window at all is akin to applying a
rectangle window—selecting a finite segment of
length N from a sampled sinusoid.

• The spectral characteristics of a rectangle window can
be seen by taking it’s spectrum (see windowSpec.m).
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Figure 10: Window Spectra.
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