Music 270a: Complex Exponentials and Spectrum Representation

Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD)

October 21, 2019

Exponentials

- The exponential function is typically used to describe the natural growth or decay of a system's state.
- An exponential function is defined as

$$x(t) = e^{-t/\tau},$$

where e=2.7182..., and τ is the **characteristic time constant**, the time it takes to decay by 1/e.

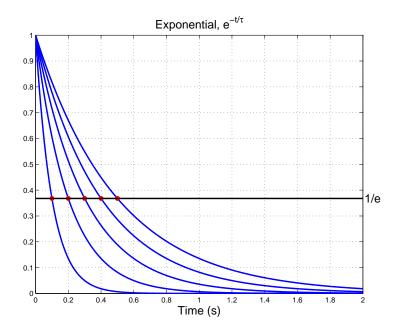


Figure 1: Exponentials with characteristic time constants, .1, .2, .3, .4, and .5

 Both exponential and sinusoidal functions are aspects of a slightly more complicated function.

Complex numbers

- Complex numbers provides a system for
 - 1. manipulating rotating vectors, and
 - 2. representing geometric effects of common digital signal processing operations (e.g. *filtering*), in algebraic form.
- In rectangular (or Cartesian) form, the complex number z is defined by the notation

$$z = x + jy$$
.

• The part without the j is called the **real** part, and the part with the j is called the **imaginary** part.

Complex Numbers as Vectors

ullet A complex number can be drawn as a vector, the tip of which is at the point (x,y), where

 $x \triangleq$ the horizontal coordinate—the **real part**, $y \triangleq$ the vertical coordinate—the **imaginary part**.

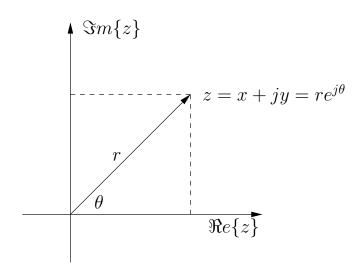


Figure 2: Cartesian and polar representations of complex numbers in the complex plane.

- Thus, the x- and y-axes may be referred to as the real and imaginary axes, respectively.
- A multiplication by j may be seen as an operation meaning "rotate counterclockwise 90° or $\pi/2$ radians".
- Two successive rotations by $\pi/2$ bring us to the negative real axis $(j^2=-1)$, and thus $j=\sqrt{-1}$.

Polar Form

A complex number may also be represented in polar form

$$z = re^{j\theta},$$

where the vector is defined by its

- 1. length r, and
- 2. direction θ (angle with horizontal real x-axis).
- The length of the vector is also called the *magnitude* of z (denoted |z|), that is

$$|z| = r$$
.

ullet The angle with the real axis is called the *argument* of z (denoted $\arg z$), that is

$$\arg z = \theta.$$

Converting from Cartesian to Polar

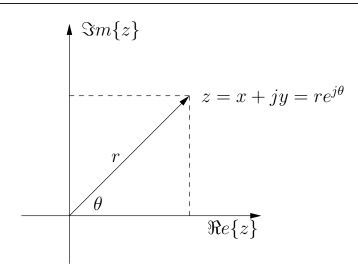


Figure 3: Cartesian and polar representations of complex numbers in the complex plane.

- Using trigonometric identities and the Pythagorean theorem, we can compute:
 - 1. The Cartesian coordinates (x, y) from the polar variables $r \angle \theta$:

$$x = r \cos \theta$$
 and $y = r \sin \theta$

2. The polar coordinates from the Cartesian:

$$r = \sqrt{x^2 + y^2}$$
 and $\theta = \arctan\left(\frac{y}{x}\right)$

Projection and Sinusoidal Motion

• Recall from our previous section on sinusoids that the projection of a rotating sinusoid on the x- and y- axes, traces out a cosine and a sine function respectively.

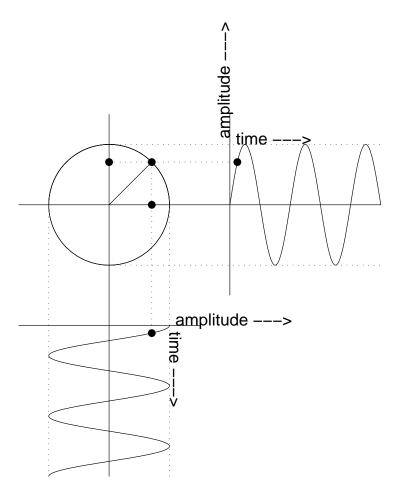


Figure 4: Projection on the x- and y- axis.

Euler's Formula

 From the result of sinusoidal projection, we can see how Euler's famous formula for the complex exponential was obtained:

$$e^{j\theta} = \cos\theta + j\sin\theta,$$

valid for any point $(\cos \theta, \sin \theta)$ on a circle of radius one (1).

 Euler's formula can be further generalized to be valid for any complex number z:

$$z = re^{j\theta} = r\cos\theta + jr\sin\theta.$$

 Though called "complex", these number usually simplify calculations considerably—particularly in the case of multiplication and division.

Complex Exponential Signals

The complex exponential signal (or complex sinusoid) is defined as

$$x(t) = Ae^{j(\omega_0 t + \phi)}.$$

 It may be expressed in Cartesian form using Euler's formula:

$$x(t) = Ae^{j(\omega_0 t + \phi)}$$

= $A\cos(\omega_0 t + \phi) + jA\sin(\omega_0 t + \phi)$.

- As with the real sinusoid,
 - A is the *amplitude* given by |x(t)|

$$|x(t)| \triangleq \sqrt{\operatorname{re}^2\{x(t)\} + \operatorname{im}^2\{x(t)\}}$$

$$\equiv \sqrt{A^2[\cos^2(\omega t + \phi) + \sin^2(\omega t + \phi)]}$$

$$\equiv A \quad \text{for all } t$$

$$(\operatorname{since } \cos^2(\omega t + \phi) + \sin^2(\omega t + \phi) = 1).$$

- $-\phi$ is the initial phase
- $-\omega_0$ is the frequency in rad/sec
- $-\omega_0 t + \phi$ is the instantaneous phase, also denoted $\arg x(t)$.

Real and Complex Exponential Signals

How does the Complex Exponential Signal compare to the real sinusoid?

• As seen from Euler's formula, the sinusoid given by $A\cos(\omega_0 t + \phi)$ is the real part of the complex exponential signal. That is,

$$A\cos(\omega_0 t + \phi) = \operatorname{re}\{Ae^{j(\omega_0 t + \phi)}\}.$$

 Recall that sinusoids can be represented by the sum of in-phase and phase-quadrature components.

$$A\cos(\omega_0 t + \phi) = \operatorname{re}\{Ae^{j(\omega_0 t + \phi)}\}\$$

$$= \operatorname{re}\{Ae^{j(\phi + \omega_0 t)}\}\$$

$$= A\operatorname{re}\{e^{j\phi}e^{j\omega_0 t}\}\$$

$$= A\operatorname{re}\{(\cos\phi + j\sin\phi)(\cos(\omega_0 t) + j\sin(\omega_0 t))\}\$$

$$= A\operatorname{re}\{\cos\phi\cos(\omega_0 t) - \sin\phi\sin(\omega_0 t)\$$

$$+ j(\cos\phi\sin(\omega_0 t) + \sin\phi\cos(\omega_0 t))\}\$$

$$= A\cos\phi\cos(\omega_0 t) - A\sin\phi\sin(\omega_0 t).$$

Inverse Euler Formulas

 The inverse Euler formulas allow us to write the cosine and sine function in terms of complex exponentials:

$$\cos \theta = \frac{e^{j\theta} + e^{-j\theta}}{2},$$

and

$$\sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}.$$

 This can be shown by adding and subtracting two complex exponentials with the same frequency but opposite in sign,

$$e^{j\theta} + e^{-j\theta} = \cos \theta + j \sin \theta + \cos \theta - j \sin \theta$$
$$= 2\cos \theta,$$

and

$$e^{j\theta} - e^{-j\theta} = \cos \theta + j \sin \theta - \cos \theta + j \sin \theta$$

= $2j \sin \theta$.

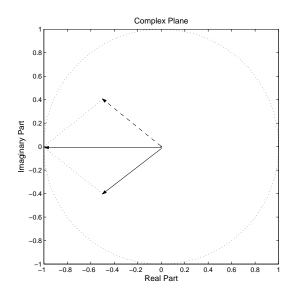
- A real cosine signal is actually composed of two complex exponential signals:
 - 1. one with a **positive frequency**
 - 2. one with a **negative frequency**

Complex Conjugate

• The complex conjugate \overline{z} of a complex number z = x + jy is given by

$$\overline{z} = x - jy$$
.

• A real cosine can be represented in the complex plane as the sum of two complex rotating vectors (scaled by 1/2) that are complex conjugates of each other.



• The negative frequencies that arise from the complex exponential representation of the signal, will greatly simplify the task of signal analysis and spectrum representation.

Conjugate Symmetry (Hermitian)

- A complex sinusoid $e^{j\omega t}$ consists of one frequency ω .
- A real sinusoid $\sin(\omega t)$ consists of **two** frequencies ω and $-\omega$.
- Every real signal, therefore, consists of an equal contribution of positive and negative frequency components.
- ullet If $X(\omega)$ denotes the spectrum of the real signal x(t), then $X(\omega)$ is conjugate symmetric (Hermitian), implying

$$|X(-\omega)| = |X(\omega)|$$

and

$$\angle X(-\omega) = -\angle X(\omega)$$

- It is sometimes easier to use the "less complicated" complex sinusoid when doing signal processing.
- Negative frequencies in a real signal may be "filtered out" to produce an analytic signal, a signal which has no negative frequency components.

Analytic Signals

• The real sinusoid $x(t) = A\cos(\omega t + \phi)$ can be converted to an analytic signal, by generating a phase quadrature component,

$$y(t) = A\sin(\omega t + \phi),$$

to serve as the imaginary part.

1. Consider the positive and negative frequency components of a real sinusoid at frequency ω_0 :

$$x_{+} \triangleq e^{j\omega_{0}t}$$
$$x_{-} \triangleq e^{-j\omega_{0}t}.$$

2. Apply a phase shift of $-\pi/2$ radians to the positive-frequency component,

$$y_{+} = e^{-j\pi/2}e^{j\omega_{0}t} = -je^{j\omega_{0}t}$$

and a phase shift of $\pi/2$ to the negative-frequency component,

$$y_{-} = e^{j\pi/2}e^{-j\omega_0 t} = je^{-j\omega_0 t}.$$

3. Form a new complex signal by adding them together:

$$z_{+}(t) \triangleq x_{+}(t) + jy_{+}(t) = e^{j\omega_{0}t} - j^{2}e^{j\omega_{0}t} = 2e^{j\omega_{0}t}$$
$$z_{-}(t) \triangleq x_{-}(t) + jy_{-}(t) = e^{-j\omega_{0}t} + j^{2}e^{-j\omega_{0}t} = 0.$$

Hilbert Transform Filters

- For more complicated signals (which are the sum of sinusoids), the *Hilbert Transform* may be used to shift each sinusoidal component by a quarter cycle.
- ullet When a real signal x(t) and its Hilbert transform $y(t)=\mathcal{H}_t\{x\}$ are used to form a new complex signal

$$z(t) = x(t) + jy(t),$$

the signal z(t) is the (complex) analytic signal corresponding to the real signal x(t).

• Problem: Given the modulated signal

$$x(t) = A(t)\cos(\omega t).$$

How do you obtain A(t) without knowing ω ? Answer: Use the Hilbert tranform to generate the analytic signal

$$z(t) \approx A(t)e^{j\omega t},$$

and then take the absolute value

$$A(t) = |z(t)|.$$

Complex Amplitude or Phasor

• When two complex numbers are multiplied, their magnitudes multiply and their angles add:

$$r_1 e^{j\theta_1} r_2 e^{j\theta_2} = r_1 r_2 e^{j(\theta_1 + \theta_2)}.$$

• If the complex number $X=Ae^{j\phi}$ is multiplied by the complex exponential signal $e^{j\omega_0t}$, we obtain

$$x(t) = Xe^{j\omega_0 t} = Ae^{j\phi}e^{j\omega_0 t} = Ae^{j(\omega_0 t + \phi)}.$$

- The complex number X is referred to as the complex amplitude, a polar representation of the amplitude and the initial phase of the complex exponential signal.
- The complex amplitude is also called a **phasor** as it can be represented graphically as a vector in the complex plane.

Spectrum Representation

- Recall that summing sinusoids of the same frequency but arbitrary amplitudes and phases produces a new single sinusoid of the same frequency.
- Summing several sinusoids of different frequencies will produce a waveform that is no longer purely sinusoidal.
- The spectrum of a signal is a graphical representation of the frequency components it contains and their complex amplitudes.
- ullet Consider a signal that is the sum of N sinusoids of arbitrary amplitudes, phases, AND frequencies:

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(\omega_k t + \phi_k)$$

Spectrum Representation cont.

• Using inverse Euler, this signal may be represented as

$$x(t) = A_0 + \sum_{k=1}^{N} \left\{ \frac{X_k}{2} e^{j\omega_k t} + \frac{\overline{X}_k}{2} e^{-j\omega_k t} \right\}.$$

- Every signal therefore, can be expressed as a linear combination of complex sinusoids.
- If a signal is the sum of N sinusoids, the spectrum will be composed of 2N+1 complex amplitudes and 2N+1 complex exponentials of a certain frequency.

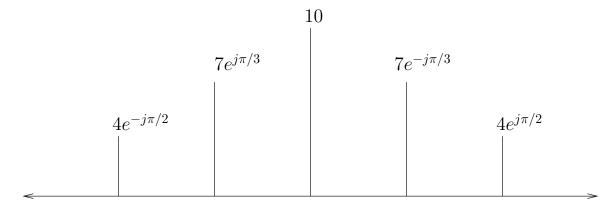


Figure 5: Spectrum of a signal with N=2 components.

Why are phasors important?

- Linear Time Invariant (LTI) systems perform only four (4) operations on a signal: copying, scaling, delaying, adding.
- The output of an LTI system therefore is always a linear combination of delayed copies of the input signal(s).
- In a discrete time system, any linear combination of delayed copies of a complex sinusoid may be expressed as

$$y(n) = \sum_{i=1}^{N} g_i x(n - d_i)$$

where g_i is the i^{th} weighting factor, d_i is the i^{th} delay, and

$$x(n) = e^{j\omega nT}.$$

Linear Time Invariant Systems

 \bullet Notice, the "carrier term" $x(n)=e^{j\omega nT}$ can be factored out to obtain

$$y(n) = \sum_{i=1}^{N} g_i x(n - d_i)$$

$$= \sum_{i=1}^{N} g_i e^{j[\omega(n - d_i)T]}$$

$$= \sum_{i=1}^{N} g_i e^{j\omega nT} e^{-j\omega d_i T}$$

$$= x(n) \sum_{i=1}^{N} g_i e^{-j\omega d_i T},$$

showing an LTI system can be reduced to a calculation involving only the sum phasors.

 Since every digital signal can be expressed as a linear combination of complex sinusoids, this analysis can be applied to any digital signal.

Signals as Vectors

- For the Discrete Fourier Transform (DFT), all signals and spectra are length N:
 - signal x(n) may be real or complex, where n=0,1,...N-1.
- We may regard x as a vector \underline{x} in an N dimensional vector space. That is, each sample x(n) is regarded as a coordinate in that space.
- Mathematically therefore, a vector \underline{x} is a single point in N-space, represented by a list of coordinates (x(0), x(1), x(2), ..., x(N-1).

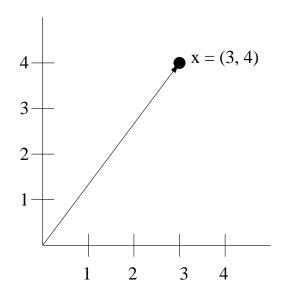


Figure 6: A length 2 signal plotted in 2D space.

Projection, Inner Product and the DFT

- The coefficient of projection of a signal x onto another signal y:
 - "a measure of how much y is present in x"
 - is computed using the inner product $\langle x,y \rangle$:

$$\langle x, y \rangle \triangleq \sum_{n=0}^{N-1} x(n) \overline{y(n)}.$$

• The vectors (signals) x and y are said to be orthogonal if $\langle x, y \rangle = 0$:

$$x \perp y \Leftrightarrow \langle x, y \rangle = 0$$

Consider the projection of

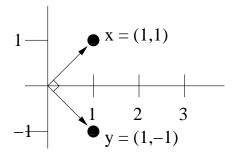


Figure 7: Two orthogonal vectors for N=2

$$\langle x, y \rangle = 1 \cdot \overline{1} + 1 \cdot \overline{(-1)} = 0.$$

Orthogonality of Sinusoids

- Sinusoids are orthogonal at different frequencies if their durations are infinite.
- ullet For length N sampled sinusoidal segments, orthogonality holds for the harmonics of the sampling rate divided by N, that is for frequencies

$$f_k = k \frac{f_s}{N}, k = 0, 1, 2, 3, ..., N - 1.$$

- ullet These are the only frequencies that have a whole number of periods in N samples.
- ullet The complex sinusoids corresponding to the frequencies f_k are

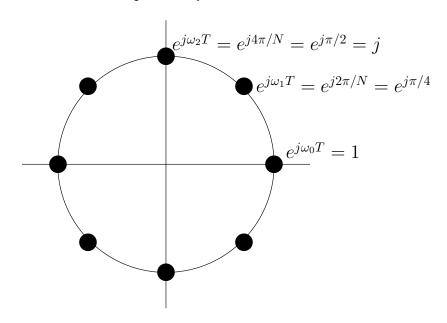
$$s_k(n) \triangleq e^{j\omega_k nT}, \omega_k \triangleq k \frac{2\pi}{N} f_s, k = 0, 1, 2, ..., N-1.$$

These sinusoids are generated by the Nth roots of unity in the complex plane, so called since

$$[e^{j\omega_k T}]^N = [e^{jk2\pi/N}]^N = e^{jk2\pi} = 1.$$

DFT Sinusoids

• The Nth roots of unity are plotted below for N=8.



- The sampled sinusoids corresponding to the N roots of unity are given by $(e^{j\omega_kT})^n=e^{j2\pi kn/N}$, and are used by the DFT.
- ullet Taking successively higher integer powers of the root $e^{j\omega_kT}$ on the unit circle, generates samples of the kth DFT sinusoid.
- ullet Since each sinusoid is of a different frequency and each is a harmonic of the sampling rate divided by N, the DFT sinusoids are orthogonal.

DFT

 \bullet Recall, one signal $y(\cdot)$ is projected onto another signal $x(\cdot)$ using an inner product defined by

$$\langle y, x \rangle \triangleq \sum_{n=0}^{N-1} y(n) \overline{x(n)}$$

ullet If x(n) is a sampled, unit amplitude, zero-phase, complex sinusoid,

$$x(n) = e^{j\omega_k nT}, n = 0, 1, \dots, N - 1,$$

then the inner product computes the *Discrete Fourier Transform* (DFT).

$$egin{array}{ll} \langle y,x
angle & \sum_{n=0}^{N-1}y(n)\overline{x(n)} \ &= \sum_{n=0}^{N-1}y(n)e^{-j\omega_k nT} \ & riangle & \mathsf{DFT}_k(y) riangle Y(\omega_k) \end{array}$$

• $Y(\omega_k)$, the DFT at frequency ω_k , is a measure of the amplitude and phase of the complex sinusoid which is present in the input signal x at that frequency.

Final DFT and IDFT

• The DFT is most often written

$$X(\omega_k) \triangleq \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi kn}{N}}, k = 0, 1, 2..., N-1.$$

• The IDFT is normally written

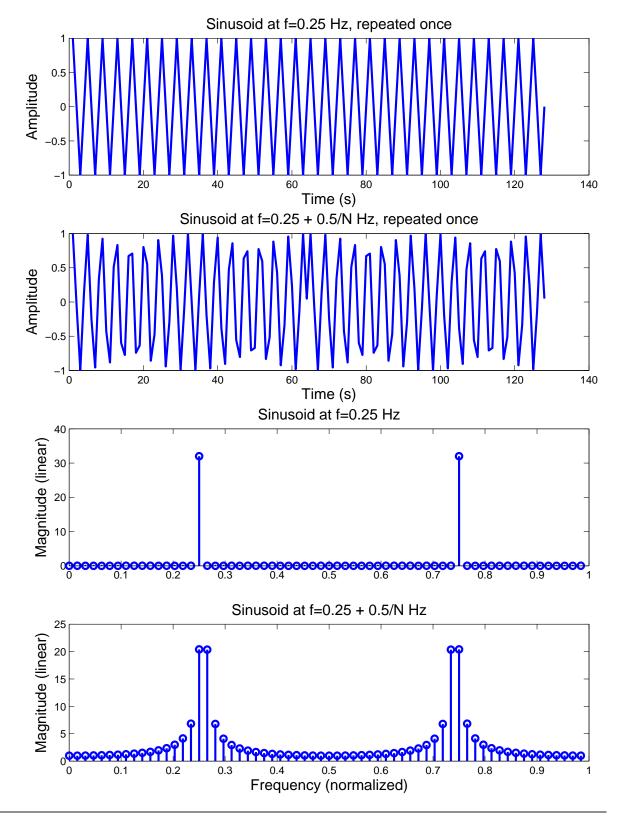
$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(\omega_k) e^{j\frac{2\pi kn}{N}}.$$

Between the DFT Bins

 Recall that DFT sinusoids are integer multiples of the sampling rate divided by N

$$f_k = k \frac{f_s}{N}, k = 0, 1, 2, ..., N - 1.$$

- ullet The DFT sinusoids are the only frequecies that have a whole number of periods in N samples.
- Consider the periodic extension of a sinusoid lying between DFT bins (see Matlab script betweenBins.m).
- Notice the "glitch" in the middle where the signal beings its forced repetition. This results in spectral "artifacts".



Zero-padding

ullet This problem can be handled, to some extent, by increasing the resolution of the DFT—increasing N by appending zeros to the input signal.

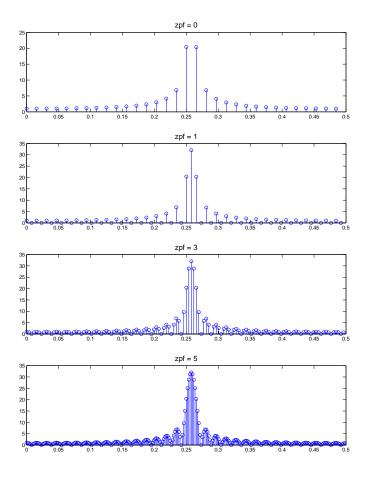


Figure 9: Spectral effect of zero padding.

Windowing

- To further improve the output of the DFT, it is desirable to apply a window, to reduce the effects of the "glitch".
- Applying no window at all is akin to applying a rectangle window—selecting a finite segment of length N from a sampled sinusoid.
- The spectral characteristics of a rectangle window can be seen by taking it's spectrum (see windowSpec.m).

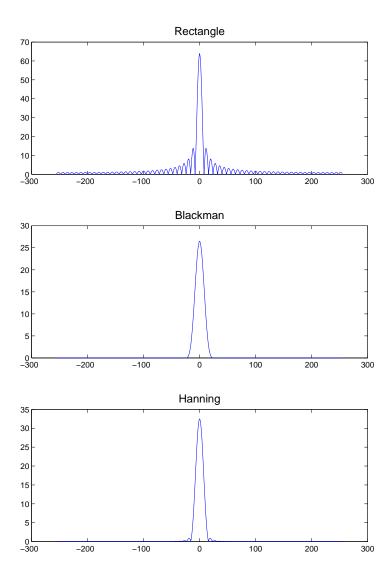


Figure 10: Window Spectra.