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Exponentials

e T he exponential function is typically used to describe
the natural growth or decay of a system'’s state.

e An exponential function is defined as
x(t) = e /T

where e = 2.7182..., and 7 is the characteristic
time constant, the time it takes to decay by 1/e.
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Figure 1: Exponentials with characteristic time constants, .1, .2, .3, .4, and .5

e Both exponential and sinusoidal functions are aspects
of a slightly more complicated function.
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Complex numbers

e Complex numbers provides a system for

1. manipulating rotating vectors, and

2. representing geometric effects of common digital
signal processing operations (e.g. filtering), in
algebraic form.

e In rectangular (or Cartesian) form, the complex
number 2 is defined by the notation

2 =x+ Y.

e The part without the j is called the real part, and
the part with the j is called the imaginary part.
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Complex Numbers as Vectors

e A complex number can be drawn as a vector, the tip

of which is at the point (z, ), where

A

x = the horizontal coordinate—the real part,

Y

£ the vertical coordinate—the imaginary part.
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Figure 2: Cartesian and polar representations of complex numbers in the complex plane.

e Thus, the z- and y-axes may be referred to as the
real and imaginary axes, respectively.

e A multiplication by 7 may be seen as an operation
meaning “rotate counterclockwise 90° or 7 /2
radians’ .

e Two successive rotations by /2 bring us to the
negative real axis (72 = —1), and thus j = /—1.
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Polar Form

e A complex number may also be represented in polar
form
2 =rel’
where the vector is defined by its
1. length r, and

2. direction 6 (angle with horizontal real x-axis).

e The length of the vector is also called the magnitude
of z (denoted |z|), that is

z] = .

e The angle with the real axis is called the argument of
z (denoted arg z), that is

arg z = 0.
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Converting from Cartesian to Polar
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Figure 3: Cartesian and polar representations of complex numbers in the complex plane.

e Using trigonometric identities and the Pythagorean
theorem, we can compute:

1. The Cartesian coordinates(z, 3) from the polar
variables 1 Z0:

x=rcosf and y=rsinf

2. The polar coordinates from the Cartesian:

r=+/x>4+y*> and 6 = arctan (Q)

X
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Projection and Sinusoidal Motion

e Recall from our previous section on sinusoids that the
projection of a rotating sinusoid on the x— and y—
axes, traces out a cosine and a sine function
respectively.
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Figure 4: Projection on the z— and y— axis.
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Euler’'s Formula

e From the result of sinusoidal projection, we can see
how Euler's famous formula for the complex
exponential was obtained:

e/ = cosf + jsin 6,

valid for any point (cos#,sin ) on a circle of radius
one (1).

e Euler's formula can be further generalized to be valid
for any complex number z:

z=rel? =rcosf+ jrsinb.

e Though called “complex”, these number usually
simplify calculations considerably—particularly in the
case of multiplication and division.
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Complex Exponential Signals

e The complex exponential signal (or complex sinusoid)

is defined as
x(t) = Aed wot+0)

e It may be expressed in Cartesian form using Euler’s
formula:

2(t) = Ae@t+9)
= Acos(wot + @) + jAsin(wot + ¢).
e As with the real sinusoid,

— A is the amplitude given by |x(t)

2(0)] £ yre2{a(t)} +im?{a ()}

\/ A2[cos?(wt + @) + sin*(wt + )]
A forallt
(since cos*(wt + @) + sin*(wt + ¢) = 1).

— @ is the initial phase
— wy is the frequency in rad/sec

— wot + ¢ is the instantaneous phase, also denoted
arg x(t).
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Real and Complex Exponential Signals

How does the Complex Exponential Signal
compare to the real sinusoid?

e As seen from Euler’s formula, the sinusoid given by
A cos(wgt + @) is the real part of the complex
exponential signal. That is,

A cos(wot 4 ¢) = re{ Aed@otto)y,

e Recall that sinusoids can be represented by the sum
of in-phase and phase-quadrature components.

A cos(wot + ¢) = re{ Aed ol ToN
— re{Ae’ (¢+w0t)}
— Are{el?e/0"}
= Are{(cos ¢ + 7sin @) (cos(wpt) + j sin(wot)) }
= Are{cos ¢ cos(wpt) — sin ¢ sin(wot)
+7(cos ¢ sin(wyt) + sin ¢ cos(wpt)) }
= Acos ¢ cos(wpt) — Asin ¢ sin(wpt).
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Inverse Euler Formulas

e The inverse Euler formulas allow us to write the
cosine and sine function in terms of complex
exponentials:

el? + e~
cosf = ; :
and y y
, e’ e’
sin 0 = ,
2]

e This can be shown by adding and subtracting two
complex exponentials with the same frequency but
opposite in sign,

e/ + e = cosh + jsinf + cosf — jsinf
= 2cosd,
and
e/ — e = cosh + jsinh — cosf + jsinf
= 27siné.

e A real cosine signal is actually composed of two
complex exponential signals:

1. one with a positive frequency
2. one with a negative frequency
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Complex Conjugate

e The complex conjugate Z of a complex number
2z =x + jy is given by
zZ=T—]Y.

e A real cosine can be represented in the complex plane
as the sum of two complex rotating vectors (scaled by
1/2) that are complex conjugates of each other.
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e [he negative frequencies that arise from the complex
exponential representation of the signal, will greatly

simplify the task of signal analysis and spectrum
representation.
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Conjugate Symmetry (Hermitian)

e A complex sinusoid €’“! consists of one frequency w.

e A real sinusoid sin(wt) consists of two frequencies w
and —w.

e Every real signal, therefore, consists of an equal
contribution of positive and negative frequency
components.

o If X (w) denotes the spectrum of the real signal x(t),
then X (w) is conjugate symmetric (Hermitian),
implying

X (—w)| = [X(w)
and
/X (—w) = —2/X(w)

e |t is sometimes easier to use the “less complicated”
complex sinusoid when doing signal processing.

e Negative frequencies in a real signal may be “filtered
out” to produce an analytic signal, a signal which has
no negative frequency components.
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Analytic Signals

e The real sinusoid x(t) = A cos(wt + ¢) can be
converted to an analytic signal, by generating a
phase quadrature component,

y(t) = Asin(wt + ¢),
to serve as the imaginary part.

1. Consider the positive and negative frequency

components of a real sinusoid at frequency wy:

A Jwpt

X €

.
r_ 2 eIwt

2. Apply a phase shift of —m/2 radians to the
positive-frequency component,
Y, = e IT/2 it _]'ejwot

and a phase shift of 7/2 to the negative-frequency
component,
y_ = ejW/Qe—jwot _ je—jwot.
3. Form a new complex signal by adding them
together:
A . _ Jwot -2 _jJwot __ Juwot
2(t) = @y(t) + Jy (t) = 0 — j7e/0" = 2e
2 (t) & x_(t)+ jy_(t) = e 4 jReI0t = ),
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Hilbert Transform Filters

e For more complicated signals (which are the sum of
sinusoids), the Hilbert Transform may be used to shift
each sinusoidal component by a quarter cycle.

e When a real signal z(t) and its Hilbert transform
y(t) = Hi{x} are used to form a new complex signal

2(t) = x(t) + gy(t),

the signal z(t) is the (complex) analytic signal
corresponding to the real signal ().

e Problem: Given the modulated signal
x(t) = A(t) cos(wt).

How do you obtain A(t) without knowing w?

Answer: Use the Hilbert tranform to generate the
analytic signal

2(t) =~ A(t)e!",
and then take the absolute value

A(t) = |2(1)]-
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Complex Amplitude or Phasor

e When two complex numbers are multiplied, their
magnitudes multiply and their angles add:

T1€j91r2€j92 _ T1T2€j(91+92>.
o If the complex number X = Ae’? is multiplied by the
complex exponential signal e/“0!, we obtain

x(t) = X elwot — ApiPeiwot — A pd(wottd)

e The complex number X is referred to as the
complex amplitude, a polar representation of the
amplitude and the initial phase of the complex
exponential signal.

e The complex amplitude is also called a phasor as it
can be represented graphically as a vector in the
complex plane.
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Spectrum Representation

e Recall that summing sinusoids of the same frequency
but arbitrary amplitudes and phases produces a new
single sinusoid of the same frequency.

e Summing several sinusoids of different frequencies will
produce a waveform that is no longer purely
sinusoidal.

e The spectrum of a signal is a graphical
representation of the frequency components it
contains and their complex amplitudes.

e Consider a signal that is the sum of N sinusoids of
arbitrary amplitudes, phases, AND frequencies:

N
x(t) = Ap + Z Ay, cos(wyt + op)
k=1
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Spectrum Representation cont.

e Using inverse Euler, this signal may be represented as

N [
Xk Xr _;
x(t) = Ag + g {7]{6‘7”“ + Tkejwkt} .
k=1

e Every signal therefore, can be expressed as a linear
combination of complex sinusoids.

e If a signal is the sum of IV sinusoids, the spectrum
will be composed of 2N + 1 complex amplitudes and
2N + 1 complex exponentials of a certain frequency.

10

7ej7r/3 76—j7r/3

4e=Im/2 LeiT/2

Figure 5: Spectrum of a signal with N = 2 components.
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Why are phasors important?

e Linear Time Invariant (LTI) systems perform only four
(4) operations on a signal: copying, scaling, delaying,
adding.

e The output of an LTI system therefore is always a
linear combination of delayed copies of the input

signal(s).

e In a discrete time system, any linear combination of
delayed copies of a complex sinusoid may be
expressed as

y(n) = Z gir(n — d;)

h h

where ¢, is the it" weighting factor, d; is the it

delay, and

z(n) = ",
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Linear Time Invariant Systems

e Notice, the “carrier term” z(n) = ¢/ can be
factored out to obtain

y(n) = Zgzw(n — d;)

N

= 57 el
1=1
N

_ E :gz_ejwnTe—jwdiT
1=1

N
= x(n) ) g T,
1=1

showing an LTI system can be reduced to a
calculation involving only the sum phasors.

e Since every digital signal can be expressed as a linear
combination of complex sinusoids, this analysis can be
applied to any digital signal.
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Signals as Vectors

e For the Discrete Fourier Transform (DFT), all signals
and spectra are length N:

— signal x(n) may be real or complex, where
n=0,1,..N — 1.

e \We may regard x as a vector = in an /N dimensional
vector space. That is, each sample x(n) is regarded
as a coordinate in that space.

e Mathematically therefore, a vector x is a single point

in N-space, represented by a list of coordinates
(33(0), 33(1), 33(2), e ZC(N o 1)

4—— X=(3,4)

1 2 3 4

Figure 6: A length 2 signal plotted in 2D space.
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Projection, Inner Product and the DFT

e The coefficient of projection of a signal x onto
another signal y:

— “a measure of how much vy is present in ="

— is computed using the inner product (x,y):

(o.9) 2 Y al(n)ylm)

e The vectors (signals) = and y are said to be
orthogonal if (x,y) = 0:
zly<(z,y) =0

e Consider the projection of

1— .X: (1,1)

I
1
2 3
(1,-1)

|
‘
1

Figure 7: Two orthogonal vectors for N = 2

(r,y) =1-1+1-(=1)=0.
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Orthogonality of Sinusoids

e Sinusoids are orthogonal at different frequencies if
their durations are infinite.

e For length N sampled sinusoidal segments,
orthogonality holds for the harmonics of the sampling
rate divided by N, that is for frequencies

Jr = k%, =0,1,2,3,...., N — 1.

e These are the only frequencies that have a whole
number of periods in NV samples.

e The complex sinusoids corresponding to the
frequencies f;. are

: 2
sp(n) = el & kﬁﬂfs, k=0,1,2,....N — 1.

These sinusoids are generated by the Nth roots of
unity in the complex plane, so called since

[ejwkT]N _ [ejk27r/N]N _ 6jk27r —1
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DFT Sinusoids

e The Nth roots of unity are plotted below for N = 8.

eJw2T — ej47r/N — ejw/2 :]

ejwlT — 6]'27'1'/]\] — 6]'71'/4

efwl =1

e The sampled sinusoids corresponding to the N roots
of unity are given by (/7" = e/2™n/N and are
used by the DFT.

e Taking successively higher integer powers of the root

e/“kI" on the unit circle, generates samples of the kth
DFT sinusoid.

e Since each sinusoid is of a different frequency and
each is a harmonic of the sampling rate divided by /V,
the DFT sinusoids are orthogonal.
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DFT

e Recall, one signal y(-) is projected onto another
signal z(-) using an inner product defined by

(y.z) £ y(n)z(n)

o If z(n) is a sampled, unit amplitude, zero-phase,
complex sinusoid,

r(n) ="' n=01,...,N -1,

then the inner product computes the Discrete Fourier
Transform (DFT).

|>

(y,z) = » y(n)x(n)

—jwinT’

= > y(ne

2 DFTi(y) £ Y (wy)

e Y (wy), the DFT at frequency wy, is a measure of the
amplitude and phase of the complex sinusoid which is
present in the input signal x at that frequency.
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Final DFT and IDFT

e The DFT is most often written

N-—1
A . 21kn
X(wg) = g r(n)e N k=0,1,2.... N —1
n=0
e The IDFT is normally written
1 — k
2mkn
r(n) =— g X(wg)e! V.
N
k=0
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Between the DFT Bins

e Recall that DFT sinusoids are integer multiples of the
sampling rate divided by N

fk — k%a
e The DFT sinusoids are the only frequecies that have a
whole number of periods in N samples.

=0,1,2,... N — 1.

e Consider the periodic extension of a sinusoid lying
between DFT bins (see Matlab script betweenBins.m)).

e Notice the “glitch” in the middle where the signal
beings its forced repetition. This results in spectral
“artifacts” .
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Zero-padding

e This problem can be handled, to some extent, by
increasing the resolution of the DF T—increasing N
by appending zeros to the input signal.

oL i
OooQooo\@@‘P\‘P‘P?\?TT TT\???\‘P‘P‘P\‘P‘P‘P@OO
0 0.05 01 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05

zpf=1
T

OQOOOAOOQ««‘P‘P???T(IT???QAQQO««OOOOOO
05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

zpf=3
T

Figure 9: Spectral effect of zero padding.
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Windowing

e To further improve the output of the DFT, it is
desirable to apply a window, to reduce the effects of
the “glitch”.

e Applying no window at all is akin to applying a
rectangle window—selecting a finite segment of

length IV from a sampled sinusoid.

e T he spectral characteristics of a rectangle window can
be seen by taking it's spectrum (see windowSpec.m).
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Figure 10: Window Spectra.
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