Exponentials

Music 270a: Complex Exponentials and Spectrum
Representation
Tamara Smyth, trsmyth@ucsd.edu
Department of Music,
University of California, San Diego (UCSD)
October 21, 2019

- The exponential function is typically used to describe the natural growth or decay of a system's state.
- An exponential function is defined as

$$
x(t)=e^{-t / \tau}
$$

where $e=2.7182 \ldots$, and τ is the characteristic time constant, the time it takes to decay by $1 / e$.

Figure 1: Exponentials with characteristic time constants, .1, .2, .3, .4, and . 5

- Both exponential and sinusoidal functions are aspects of a slightly more complicated function.

Complex Numbers as Vectors

- A complex number can be drawn as a vector, the tip of which is at the point (x, y), where
$x \triangleq$ the horizontal coordinate-the real part, $y \triangleq$ the vertical coordinate-the imaginary part.

Figure 2: Cartesian and polar representations of complex numbers in the complex plane.

- Thus, the x - and y-axes may be referred to as the real and imaginary axes, respectively.
- A multiplication by j may be seen as an operation meaning "rotate counterclockwise 90° or $\pi / 2$ radians".
- Two successive rotations by $\pi / 2$ bring us to the negative real axis $\left(j^{2}=-1\right)$, and thus $j=\sqrt{-1}$.

Polar Form

- A complex number may also be represented in polar form

$$
z=r e^{j \theta}
$$

where the vector is defined by its

1. length r, and
2. direction θ (angle with horizontal real x -axis).

- The length of the vector is also called the magnitude of z (denoted $|z|)$, that is

$$
|z|=r
$$

- The angle with the real axis is called the argument of z (denoted $\arg z$), that is

$$
\arg z=\theta
$$

Projection and Sinusoidal Motion

- Recall from our previous section on sinusoids that the projection of a rotating sinusoid on the $x-$ and $y-$ axes, traces out a cosine and a sine function respectively.

Figure 4: Projection on the $x-$ and $y-$ axis.

Converting from Cartesian to Polar

Figure 3: Cartesian and polar representations of complex numbers in the complex plane.

- Using trigonometric identities and the Pythagorean theorem, we can compute:

1. The Cartesian coordinates (x, y) from the polar variables $r \angle \theta$:

$$
x=r \cos \theta \quad \text { and } \quad y=r \sin \theta
$$

2. The polar coordinates from the Cartesian:

$$
r=\sqrt{x^{2}+y^{2}} \quad \text { and } \quad \theta=\arctan \left(\frac{y}{x}\right)
$$

Euler's Formula

- From the result of sinusoidal projection, we can see how Euler's famous formula for the complex exponential was obtained:

$$
e^{j \theta}=\cos \theta+j \sin \theta
$$

valid for any point $(\cos \theta, \sin \theta)$ on a circle of radius one (1).

- Euler's formula can be further generalized to be valid for any complex number z :

$$
z=r e^{j \theta}=r \cos \theta+j r \sin \theta
$$

- Though called "complex", these number usually simplify calculations considerably-particularly in the case of multiplication and division.

Complex Exponential Signals

- The complex exponential signal (or complex sinusoid) is defined as

$$
x(t)=A e^{j\left(\omega_{0} t+\phi\right)} .
$$

- It may be expressed in Cartesian form using Euler's formula:

$$
\begin{aligned}
x(t) & =A e^{j\left(\omega_{0} t+\phi\right)} \\
& =A \cos \left(\omega_{0} t+\phi\right)+j A \sin \left(\omega_{0} t+\phi\right) .
\end{aligned}
$$

- As with the real sinusoid,
- A is the amplitude given by $|x(t)|$

$$
\begin{aligned}
|x(t)| \triangleq & \sqrt{\operatorname{re}^{2}\{x(t)\}+\operatorname{im}^{2}\{x(t)\}} \\
\equiv & \sqrt{A^{2}\left[\cos ^{2}(\omega t+\phi)+\sin ^{2}(\omega t+\phi)\right]} \\
\equiv & =A \text { for all } t \\
& \quad\left(\text { since } \cos ^{2}(\omega t+\phi)+\sin ^{2}(\omega t+\phi)=1\right) .
\end{aligned}
$$

$-\phi$ is the initial phase
$-\omega_{0}$ is the frequency in rad/sec
$-\omega_{0} t+\phi$ is the instantaneous phase, also denoted $\arg x(t)$.

Inverse Euler Formulas

- The inverse Euler formulas allow us to write the cosine and sine function in terms of complex exponentials:

$$
\cos \theta=\frac{e^{j \theta}+e^{-j \theta}}{2}
$$

and

$$
\sin \theta=\frac{e^{j \theta}-e^{-j \theta}}{2 j}
$$

- This can be shown by adding and subtracting two complex exponentials with the same frequency but opposite in sign,

$$
\begin{aligned}
e^{j \theta}+e^{-j \theta} & =\cos \theta+j \sin \theta+\cos \theta-j \sin \theta \\
& =2 \cos \theta
\end{aligned}
$$

and

$$
\begin{aligned}
e^{j \theta}-e^{-j \theta} & =\cos \theta+j \sin \theta-\cos \theta+j \sin \theta \\
& =2 j \sin \theta .
\end{aligned}
$$

- A real cosine signal is actually composed of two complex exponential signals:

1. one with a positive frequency
2. one with a negative frequency

Real and Complex Exponential Signals

How does the Complex Exponential Signal compare to the real sinusoid?

- As seen from Euler's formula, the sinusoid given by $A \cos \left(\omega_{0} t+\phi\right)$ is the real part of the complex exponential signal. That is,

$$
A \cos \left(\omega_{0} t+\phi\right)=r e\left\{A e^{j\left(\omega_{0} t+\phi\right)}\right\} .
$$

- Recall that sinusoids can be represented by the sum of in-phase and phase-quadrature components.

$$
\begin{aligned}
& A \cos \left(\omega_{0} t+\phi\right)=\operatorname{re}\left\{A e^{j\left(\omega_{0} t+\phi\right)}\right\} \\
= & \operatorname{re}\left\{A e^{j\left(\phi+\omega_{0} t\right)}\right\} \\
= & A \operatorname{re}\left\{e^{j \phi} e^{j \omega_{0} t}\right\} \\
= & A \operatorname{re}\left\{(\cos \phi+j \sin \phi)\left(\cos \left(\omega_{0} t\right)+j \sin \left(\omega_{0} t\right)\right)\right\} \\
= & A \operatorname{re}\left\{\cos \phi \cos \left(\omega_{0} t\right)-\sin \phi \sin \left(\omega_{0} t\right)\right. \\
& \left.\quad j\left(\cos \phi \sin \left(\omega_{0} t\right)+\sin \phi \cos \left(\omega_{0} t\right)\right)\right\} \\
= & A \cos \phi \cos \left(\omega_{0} t\right)-A \sin \phi \sin \left(\omega_{0} t\right) .
\end{aligned}
$$

Complex Conjugate

- The complex conjugate \bar{z} of a complex number $z=x+j y$ is given by

$$
\bar{z}=x-j y .
$$

- A real cosine can be represented in the complex plane as the sum of two complex rotating vectors (scaled by $1 / 2$) that are complex conjugates of each other.

- The negative frequencies that arise from the complex exponential representation of the signal, will greatly simplify the task of signal analysis and spectrum representation.

Conjugate Symmetry (Hermitian)

Analytic Signals

- A complex sinusoid $e^{j \omega t}$ consists of one frequency ω.
- A real sinusoid $\sin (\omega t)$ consists of two frequencies ω and $-\omega$.
- Every real signal, therefore, consists of an equal contribution of positive and negative frequency components.
- If $X(\omega)$ denotes the spectrum of the real signal $x(t)$, then $X(\omega)$ is conjugate symmetric (Hermitian), implying

$$
|X(-\omega)|=|X(\omega)|
$$

and

$$
\angle X(-\omega)=-\angle X(\omega)
$$

- It is sometimes easier to use the "less complicated" complex sinusoid when doing signal processing.
- Negative frequencies in a real signal may be "filtered out" to produce an analytic signal, a signal which has no negative frequency components.

Hilbert Transform Filters

- For more complicated signals (which are the sum of sinusoids), the Hilbert Transform may be used to shift each sinusoidal component by a quarter cycle.
- When a real signal $x(t)$ and its Hilbert transform $y(t)=\mathcal{H}_{t}\{x\}$ are used to form a new complex signal

$$
z(t)=x(t)+j y(t)
$$

the signal $z(t)$ is the (complex) analytic signal corresponding to the real signal $x(t)$.

- Problem: Given the modulated signal

$$
x(t)=A(t) \cos (\omega t) .
$$

How do you obtain $A(t)$ without knowing ω ?
Answer: Use the Hilbert tranform to generate the analytic signal

$$
z(t) \approx A(t) e^{j \omega t}
$$

and then take the absolute value

$$
A(t)=|z(t)|
$$

- The real sinusoid $x(t)=A \cos (\omega t+\phi)$ can be converted to an analytic signal, by generating a phase quadrature component,

$$
y(t)=A \sin (\omega t+\phi)
$$

to serve as the imaginary part.

1. Consider the positive and negative frequency components of a real sinusoid at frequency ω_{0} :

$$
\begin{aligned}
& x_{+} \triangleq e^{j \omega_{0} t} \\
& x_{-} \triangleq e^{-j \omega_{0} t} .
\end{aligned}
$$

2. Apply a phase shift of $-\pi / 2$ radians to the positive-frequency component,

$$
y_{+}=e^{-j \pi / 2} e^{j \omega_{0} t}=-j e^{j \omega_{0} t}
$$

and a phase shift of $\pi / 2$ to the negative-frequency component,

$$
y_{-}=e^{j \pi / 2} e^{-j \omega_{0} t}=j e^{-j \omega_{0} t}
$$

3. Form a new complex signal by adding them together:
$z_{+}(t) \triangleq x_{+}(t)+j y_{+}(t)=e^{j \omega_{0} t}-j^{2} e^{j \omega_{0} t}=2 e^{j \omega_{0} t}$
$z_{-}(t) \triangleq x_{-}(t)+j y_{-}(t)=e^{-j \omega_{0} t}+j^{2} e^{-j \omega_{0} t}=0$.

Complex Amplitude or Phasor

- When two complex numbers are multiplied, their magnitudes multiply and their angles add:

$$
r_{1} e^{j \theta_{1}} r_{2} e^{j \theta_{2}}=r_{1} r_{2} e^{j\left(\theta_{1}+\theta_{2}\right)}
$$

- If the complex number $X=A e^{j \phi}$ is multiplied by the complex exponential signal $e^{j \omega_{0} t}$, we obtain

$$
x(t)=X e^{j \omega_{0} t}=A e^{j \phi} e^{j \omega_{0} t}=A e^{j\left(\omega_{0} t+\phi\right)}
$$

- The complex number X is referred to as the complex amplitude, a polar representation of the amplitude and the initial phase of the complex exponential signal.
- The complex amplitude is also called a phasor as it can be represented graphically as a vector in the complex plane.

Spectrum Representation

- Recall that summing sinusoids of the same frequency but arbitrary amplitudes and phases produces a new single sinusoid of the same frequency.
- Summing several sinusoids of different frequencies will produce a waveform that is no longer purely sinusoidal.
- The spectrum of a signal is a graphical representation of the frequency components it contains and their complex amplitudes.
- Consider a signal that is the sum of N sinusoids of arbitrary amplitudes, phases, AND frequencies:

$$
x(t)=A_{0}+\sum_{k=1}^{N} A_{k} \cos \left(\omega_{k} t+\phi_{k}\right)
$$

Why are phasors important?

- Linear Time Invariant (LTI) systems perform only four (4) operations on a signal: copying, scaling, delaying, adding.
- The output of an LTI system therefore is always a linear combination of delayed copies of the input signal(s).
- In a discrete time system, any linear combination of delayed copies of a complex sinusoid may be expressed as

$$
y(n)=\sum_{i=1}^{N} g_{i} x\left(n-d_{i}\right)
$$

where g_{i} is the $i^{\text {th }}$ weighting factor, d_{i} is the $i^{\text {th }}$ delay, and

$$
x(n)=e^{j \omega n T} .
$$

- Using inverse Euler, this signal may be represented as

$$
x(t)=A_{0}+\sum_{k=1}^{N}\left\{\frac{X_{k}}{2} e^{j \omega_{k} t}+\frac{\bar{X}_{k}}{2} e^{-j \omega_{k} t}\right\} .
$$

- Every signal therefore, can be expressed as a linear combination of complex sinusoids.
- If a signal is the sum of N sinusoids, the spectrum will be composed of $2 N+1$ complex amplitudes and $2 N+1$ complex exponentials of a certain frequency.

Figure 5: Spectrum of a signal with $N=2$ components.

Linear Time Invariant Systems

- Notice, the "carrier term" $x(n)=e^{j \omega n T}$ can be factored out to obtain

$$
\begin{aligned}
y(n) & =\sum_{i=1}^{N} g_{i} x\left(n-d_{i}\right) \\
& =\sum_{i=1}^{N} g_{i} e^{j\left[\left(n-d_{i}\right) T\right]} \\
& =\sum_{i=1}^{N} g_{i} e^{j \omega n T} e^{-j \omega d_{i} T} \\
& =x(n) \sum_{i=1}^{N} g_{i} e^{-j \omega d_{i} T},
\end{aligned}
$$

showing an LTI system can be reduced to a calculation involving only the sum phasors.

- Since every digital signal can be expressed as a linear combination of complex sinusoids, this analysis can be applied to any digital signal.

Signals as Vectors

- For the Discrete Fourier Transform (DFT), all signals and spectra are length N :
- signal $x(n)$ may be real or complex, where

$$
n=0,1, \ldots N-1 .
$$

- We may regard x as a vector \underline{x} in an N dimensional vector space. That is, each sample $x(n)$ is regarded as a coordinate in that space.
- Mathematically therefore, a vector \underline{x} is a single point in N -space, represented by a list of coordinates

$$
(x(0), x(1), x(2), \ldots, x(N-1) .
$$

Figure 6: A length 2 signal plotted in 2D space.

Orthogonality of Sinusoids

- Sinusoids are orthogonal at different frequencies if their durations are infinite.
- For length N sampled sinusoidal segments, orthogonality holds for the harmonics of the sampling rate divided by N, that is for frequencies

$$
f_{k}=k \frac{f_{s}}{N}, k=0,1,2,3, \ldots, N-1
$$

- These are the only frequencies that have a whole number of periods in N samples.
- The complex sinusoids corresponding to the frequencies f_{k} are

$$
s_{k}(n) \triangleq e^{j \omega_{k} n T}, \omega_{k} \triangleq k \frac{2 \pi}{N} f_{s}, k=0,1,2, \ldots, N-1
$$

These sinusoids are generated by the N th roots of unity in the complex plane, so called since

$$
\left[e^{j \omega_{k} T}\right]^{N}=\left[e^{j k 2 \pi / N}\right]^{N}=e^{j k 2 \pi}=1
$$

Projection, Inner Product and the DFT

- The coefficient of projection of a signal x onto another signal y :
- "a measure of how much y is present in x "
- is computed using the inner product $\langle x, y\rangle$:

$$
\langle x, y\rangle \triangleq \sum_{n=0}^{N-1} x(n) \overline{y(n)}
$$

- The vectors (signals) x and y are said to be orthogonal if $\langle x, y\rangle=0$:

$$
x \perp y \Leftrightarrow\langle x, y\rangle=0
$$

- Consider the projection of

Figure 7: Two orthogonal vectors for $N=2$

$$
\langle x, y\rangle=1 \cdot \overline{1}+1 \cdot \overline{(-1)}=0
$$

DFT Sinusoids

- The N th roots of unity are plotted below for $N=8$.

- The sampled sinusoids corresponding to the N roots of unity are given by $\left(e^{j \omega_{k} T}\right)^{n}=e^{j 2 \pi k n / N}$, and are used by the DFT.
- Taking successively higher integer powers of the root $e^{j \omega_{k} T}$ on the unit circle, generates samples of the k th DFT sinusoid.
- Since each sinusoid is of a different frequency and each is a harmonic of the sampling rate divided by N, the DFT sinusoids are orthogonal.

DFT

Final DFT and IDFT

- Recall, one signal $y(\cdot)$ is projected onto another signal $x(\cdot)$ using an inner product defined by

$$
\langle y, x\rangle \triangleq \sum_{n=0}^{N-1} y(n) \overline{x(n)}
$$

- If $x(n)$ is a sampled, unit amplitude, zero-phase, complex sinusoid,

$$
x(n)=e^{j \omega_{k} n T}, n=0,1, \ldots, N-1
$$

then the inner product computes the Discrete Fourier Transform (DFT).

$$
\begin{aligned}
\langle y, x\rangle & \triangleq \sum_{n=0}^{N-1} y(n) \overline{x(n)} \\
& =\sum_{n=0}^{N-1} y(n) e^{-j \omega_{k} n T} \\
& \triangleq \operatorname{DFT}_{k}(y) \triangleq Y\left(\omega_{k}\right)
\end{aligned}
$$

- $Y\left(\omega_{k}\right)$, the DFT at frequency ω_{k}, is a measure of the amplitude and phase of the complex sinusoid which is present in the input signal x at that frequency.

Between the DFT Bins

- Recall that DFT sinusoids are integer multiples of the sampling rate divided by N

$$
f_{k}=k \frac{f_{s}}{N}, k=0,1,2, \ldots, N-1
$$

- The DFT sinusoids are the only frequecies that have a whole number of periods in N samples.
- Consider the periodic extension of a sinusoid lying between DFT bins (see Matlab script betweenBins.m).
- Notice the "glitch" in the middle where the signal beings its forced repetition. This results in spectral "artifacts".
- The DFT is most often written

$$
X\left(\omega_{k}\right) \triangleq \sum_{n=0}^{N-1} x(n) e^{-j \frac{2 \pi k n}{N}}, k=0,1,2 \ldots, N-1
$$

- The IDFT is normally written

$$
x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X\left(\omega_{k}\right) e^{j \frac{2 \pi k n}{N}}
$$

Zero-padding

- This problem can be handled, to some extent, by increasing the resolution of the DFT-increasing N by appending zeros to the input signal.

Figure 9: Spectral effect of zero padding

Windowing

- To further improve the output of the DFT, it is desirable to apply a window, to reduce the effects of the "glitch".
- Applying no window at all is akin to applying a rectangle window-selecting a finite segment of length N from a sampled sinusoid.
- The spectral characteristics of a rectangle window can be seen by taking it's spectrum (see windowSpec.m).

Figure 10: Window Spectra.

