Exponentials

Music 270a: Complex Exponentials and Spectrum

Representation e The exponential function is typically used to describe
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where e = 2.7182..., and 7 is the characteristic
time constant, the time it takes to decay by 1/e.

Exponential, e V"

/e

o8 _ 1 12 14 1s 18 2
Time (s)

Figure 1: Exponentials with characteristic time constants, .1, .2, .3, .4, and .5

e Both exponential and sinusoidal functions are aspects
of a slightly more complicated function.
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Complex numbers Complex Numbers as Vectors

e A complex number can be drawn as a vector, the tip

e Complex numbers provides a system for of which is at the point (2, y), where

1. manipulating rotating vectors, and £ the horizontal coordinate—the real part,
2. representing geometric effects of common digital £ the vertical coordinate—the imaginary part.
signal processing operations (e.g. filtering), in N
algebraic form. Sm{z}
e In rectangular (or Cartesian) form, the complex s a4 jy=rel
number z is defined by the notation
. r !
z=x+)y. |
[ |
e The part without the j is called the real part, and Re{z}

the part with the j is called the imaginary part.

Figure 2: Cartesian and polar representations of complex numbers in the complex plane.

e Thus, the z- and y-axes may be referred to as the
real and imaginary axes, respectively.

e A multiplication by j may be seen as an operation
meaning “rotate counterclockwise 90° or /2
radians”.

e Two successive rotations by 7/2 bring us to the
negative real axis (j2 = —1), and thus j = /—1.
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Polar Form

e A complex number may also be represented in polar
form
z=rel,

where the vector is defined by its

1. length r, and
2. direction 6 (angle with horizontal real x-axis).

e The length of the vector is also called the magnitude
of z (denoted |z|), that is

|z| = 7.

e The angle with the real axis is called the argument of
z (denoted arg z), that is

argz = 0.
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Projection and Sinusoidal Motion

ot

e Recall from our previous section on sinusoids that the
projection of a rotating sinusoid on the z— and y—
axes, traces out a cosine and a sine function
respectively.
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Figure 4: Projection on the z— and y— axis.
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Converting from Cartesian to Polar

Figure 3: Cartesian and polar representations of complex numbers in the complex plane.
e Using trigonometric identities and the Pythagorean
theorem, we can compute:

1. The Cartesian coordinates(z, y) from the polar
variables rZ0:

x=rcosf and y=rsind

2. The polar coordinates from the Cartesian:

r=+/22+y? and 6 = arctan (%)
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Euler’s Formula

e From the result of sinusoidal projection, we can see
how Euler’'s famous formula for the complex
exponential was obtained:

70

e’’ =cosf+ jsind,

valid for any point (cos,sin @) on a circle of radius
one (1).

e Euler’s formula can be further generalized to be valid
for any complex number z:

2z =re! =rcosh+ jrsin.
e Though called “complex”, these number usually

simplify calculations considerably—particularly in the
case of multiplication and division.

Music 270a: Complex Exponentials and Spectrum Representation



Complex Exponential Signals

e The complex exponential signal (or complex sinusoid)
is defined as
z(t) = Aelot+9),

e |t may be expressed in Cartesian form using Euler’s
formula:

z(t) = Ae/lotte)
= Acos(wot + @) + jAsin(wet + ¢).
e As with the real sinusoid,

— A'is the amplitude given by |z(t)]
2(t)] 2 \Jre{a(t)} +imHa(t)}

\/A2[0052(wt +¢)+ SiHQ(wt +¢)]
A forallt

(since cos®(wt + ¢) + sin*(wt + ¢) = 1).

— ¢ is the initial phase

— wy is the frequency in rad/sec

— wot + ¢ is the instantaneous phase, also denoted
arg z(t).
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Inverse Euler Formulas

e The inverse Euler formulas allow us to write the
cosine and sine function in terms of complex
exponentials:

el? 4 e
cos = —
and " "
. 6‘] — 67]
sinf = ——
2J

e This can be shown by adding and subtracting two
complex exponentials with the same frequency but
opposite In sign,

e +e% = cosf+ jsinf + cosf — jsin
= 2cosb,

and

19— 7% = cosf + jsin@ — cosf + jsin 6

= 2jsind.

e

e A real cosine signal is actually composed of two
complex exponential signals:

1. one with a positive frequency
2. one with a negative frequency
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Real and Complex Exponential Signals

How does the Complex Exponential Signal
compare to the real sinusoid?

e As seen from Euler’s formula, the sinusoid given by
A cos(wot + ¢) is the real part of the complex
exponential signal. That is,

Acos(wyt + ¢) = re{ A/ “0t+o)},

o Recall that sinusoids can be represented by the sum
of in-phase and phase-quadrature components.

Acos(wot + ¢) = re{ Aed“0t+9)}
re{ Aej(owot)}
— Are{emeiwlt}
Are{(cos ¢ + jsin @) (cos(wpt) + J sin(wot))}
Are{cos ¢ cos(wot) — sin ¢ sin(wpt)
+7j(cos ¢ sin(wpt) + sin ¢ cos(wpt)) }
A cos ¢ cos(wot) — Asin ¢ sin(wot).
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Complex Conjugate

e The complex conjugate Z of a complex number
2z =z + jy is given by
zZ=x—Jy.

e A real cosine can be represented in the complex plane
as the sum of two complex rotating vectors (scaled by
1/2) that are complex conjugates of each other.

Complex Plane

Imaginary Part

-02| :
-04]

2 0 oz
Real Part

e The negative frequencies that arise from the complex
exponential representation of the signal, will greatly
simplify the task of signal analysis and spectrum
representation.
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Conjugate Symmetry (Hermitian)

e A complex sinusoid e/“! consists of one frequency w.

e A real sinusoid sin(wt) consists of two frequencies w
and —w.

e Every real signal, therefore, consists of an equal
contribution of positive and negative frequency
components.

e If X(w) denotes the spectrum of the real signal z(¢),
then X (w) is conjugate symmetric (Hermitian),
implying

| X (—w)[ = [X(w)]
and
LX(~w) = —£X(w)

e |t is sometimes easier to use the “less complicated”
complex sinusoid when doing signal processing.

e Negative frequencies in a real signal may be “filtered
out” to produce an analytic signal, a signal which has
no negative frequency components.
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Hilbert Transform Filters

e For more complicated signals (which are the sum of
sinusoids), the Hilbert Transform may be used to shift
each sinusoidal component by a quarter cycle.

e When a real signal z(t) and its Hilbert transform
y(t) = Hy{x} are used to form a new complex signal

2(t) = x(t) + jy(),

the signal z(t) is the (complex) analytic signal
corresponding to the real signal x(t).

e Problem: Given the modulated signal
x(t) = A(t) cos(wt).
How do you obtain A(t) without knowing w?

Answer: Use the Hilbert tranform to generate the
analytic signal

2(t) = A(t)e,
and then take the absolute value

At) = |=(0)].
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Analytic Signals

e The real sinusoid x(t) = A cos(wt + ¢) can be
converted to an analytic signal, by generating a
phase quadrature component,

y(t) = Asin(wt + ¢),
to serve as the imaginary part.

1. Consider the positive and negative frequency
components of a real sinusoid at frequency wy:

A jwot

T4 €

A —iw
. & eJwol

2. Apply a phase shift of —m/2 radians to the
positive-frequency component,
Y, = e Im/2giwot — _jejwot

and a phase shift of 7/2 to the negative-frequency
component,
y_ = eIT/2 =it — jefj'w'ot‘
3. Form a new complex signal by adding them
together:
2(t) £ 2y(t) + jya(t) = U — 20 = 2
z_(t) r_(t)+ jy-(t) = e dwot 4 2wl — (),
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Complex Amplitude or Phasor

e When two complex numbers are multiplied, their
magnitudes multiply and their angles add:

7‘16‘7917‘26‘792 _ 7"17”2€j(91+92)~
o If the complex number X = Ae/? is multiplied by the
complex exponential signal e/“’, we obtain

z(t) = X elwot — Api®eivnt — Api(wot+e)

e The complex number X is referred to as the
complex amplitude, a polar representation of the
amplitude and the initial phase of the complex
exponential signal.

e The complex amplitude is also called a phasor as it
can be represented graphically as a vector in the
complex plane.
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Spectrum Representation

e Recall that summing sinusoids of the same frequency
but arbitrary amplitudes and phases produces a new
single sinusoid of the same frequency.

e Summing several sinusoids of different frequencies will
produce a waveform that is no longer purely
sinusoidal.

e The spectrum of a signal is a graphical
representation of the frequency components it
contains and their complex amplitudes.

e Consider a signal that is the sum of NV sinusoids of
arbitrary amplitudes, phases, AND frequencies:

A“)\‘y
z(t) = A + Z Ay, cos(wit + o)
k=1
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Why are phasors important?

e Linear Time Invariant (LTI) systems perform only four
(4) operations on a signal: copying, scaling, delaying,
adding.

e The output of an LTI system therefore is always a
linear combination of delayed copies of the input

signal(s).
e In a discrete time system, any linear combination of

delayed copies of a complex sinusoid may be
expressed as

y(n) = Zgzx(” — d;)

h h

where g, is the it" weighting factor, d; is the it

delay, and

x(n) = el
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Spectrum Representation cont.

e Using inverse Euler, this signal may be represented as

N —
z(t) = Ao+ E {lewkt + le_‘“’”} .
51

e Every signal therefore, can be expressed as a linear
combination of complex sinusoids.

o If a signal is the sum of N sinusoids, the spectrum
will be composed of 2N + 1 complex amplitudes and
2N + 1 complex exponentials of a certain frequency.

10

Teinls Teminlt

de~im/2 4eiT/?

Figure 5: Spectrum of a signal with N = 2 components.
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Linear Time Invariant Systems

e Notice, the “carrier term” z(n) = ¢/*"T can be
factored out to obtain

y(n)

N
Z gix(n —d;)
i=1

A‘?\‘y

= 3 giedleto-ait)
=1
N

_ E giejwnTefjwd,;T

i=1
= z(n) Z gie T
i=1

showing an LTI system can be reduced to a
calculation involving only the sum phasors.

e Since every digital signal can be expressed as a linear
combination of complex sinusoids, this analysis can be
applied to any digital signal.
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Signals as Vectors

e For the Discrete Fourier Transform (DFT), all signals
and spectra are length N:

— signal 2:(n) may be real or complex, where
n=0,1,..N— 1L

e We may regard x as a vector x in an N dimensional
vector space. That is, each sample z:(n) is regarded
as a coordinate in that space.

e Mathematically therefore, a vector z is a single point
in N-space, represented by a list of coordinates

41 X= (3, 4)

1 2 3 4

Figure 6: A length 2 signal plotted in 2D space.
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Orthogonality of Sinusoids

e Sinusoids are orthogonal at different frequencies if
their durations are infinite.

e For length N sampled sinusoidal segments,
orthogonality holds for the harmonics of the sampling
rate divided by N, that is for frequencies

fr = k’%,k =0,1,2,3,...., N — 1.
e These are the only frequencies that have a whole

number of periods in N samples.

e The complex sinusoids corresponding to the
frequencies f}. are

N 2
sp(n) 2 el A k%fs, k=012, N—1.

These sinusoids are generated by the Nth roots of
unity in the complex plane, so called since

[ejwkT}N [e]‘kQﬂ'/N]N = ejk?ﬂ =1.
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Projection, Inner Product and the DFT

e The coefficient of projection of a signal x onto
another signal y:
— "a measure of how much y is present in 2"
— is computed using the inner product (z,y):

N-1

(w.y) £ aln)y(n).

n=0
e The vectors (signals) x and y are said to be
orthogonal if (x,y) = 0:

zlye(z,y) =0

e Consider the projection of

Figure 7: Two orthogonal vectors for N = 2

(z,y) =1-T+1-(=1)=0.
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DFT Sinusoids

e The Nth roots of unity are plotted below for N = 8.

ejsz — 6j47r/1\1 — 6jﬂ/Z :]

e T — oi2m/N _ pjm/4

edwol — 1

e The sampled sinusoids corresponding to the N roots
of unity are given by (e/T)" = ¢?™n/N "and are
used by the DFT.

e Taking successively higher integer powers of the root
e/“kT on the unit circle, generates samples of the kth
DFT sinusoid.

e Since each sinusoid is of a different frequency and
each is a harmonic of the sampling rate divided by N,
the DFT sinusoids are orthogonal.
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DFT

e Recall, one signal y(-) is projected onto another
signal () using an inner product defined by

w2y 2 Yy
n=0

e If z(n) is a sampled, unit amplitude, zero-phase,
complex sinusoid,
z(n) =" n=0,1,... N -1,
then the inner product computes the Discrete Fourier
Transform (DFT).

(y,z) £ iy(n)m
n=0

N-1
_ Z y(n)e—]w;\.nT

n=>0
DFT.(y) £ Y (wy)

e Y(wy), the DFT at frequency wy, is a measure of the
amplitude and phase of the complex sinusoid which is
present in the input signal x at that frequency.

>
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Between the DFT Bins

e Recall that DFT sinusoids are integer multiples of the
sampling rate divided by N

fr= k%,k =0,1,2,...., N — 1.
e The DFT sinusoids are the only frequecies that have a

whole number of periods in N samples.

e Consider the periodic extension of a sinusoid lying
between DFT bins (see Matlab script betweenBins.m).

e Notice the “glitch” in the middle where the signal
beings its forced repetition. This results in spectral
“artifacts”.
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Final DFT and IDFT

e The DFT is most often written

N-1
-2mkn
A — g £RLTL
X(wy) = E x(n)e N k=0,1,2., N —1
n=0
e The IDFT is normally written
e
s 2mkn
x(n) = N g X (wg)e?™n
k=0
Music 270a: Complex Exponentials and Spectrum Representation 26
Sinusoid at f=0.25 Hz, repeated once
1 T T T T
) 05 —
°
=2
S ]
€
< _os 4
1 | | | | 1 1
0 20 40 60 80 100 120 140
Time (s)
Sinusoid at f=0.25 + 0.5/N Hz, repeated once
1 T T
o 05 4
°
2
3 ° ]
£
< o5t g
o . . . . . .
0 20 40 60 80 100 120 140
Time (s)
Sinusoid at f=0.25 Hz
40 T T T
®
8 20t g
2
e
D 10 *
&
=
0.1 02 03 0.4 05 06 0.7 0.8 0.9 1
Sinusoid at f=0.25 + 0.5/N Hz
25 T T T T T
% ol o o i
£
< 51 4
()
=]
2
'E
(=
s
=

Frequency (normalized)

Music 270a: Complex Exponentials and Spectrum Representation

28


http://musicweb.ucsd.edu/~trsmyth/mfiles270a/betweenBins.m

Zero-padding Windowing

e This problem can be handled, to some extent, by e To further improve the output of the DFT, it is
increasing the resolution of the DFT—increasing NV desirable to apply a window, to reduce the effects of
by appending zeros to the input signal. the “glitch”.

e Applying no window at all is akin to applying a
N rectangle window—selecting a finite segment of

length N from a sampled sinusoid.

epenngerg L Hronee ey

e The spectral characteristics of a rectangle window can
be seen by taking it's spectrum (see windowSpec.m).

A I TT,W

Figure 9: Spectral effect of zero padding.
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Figure 10: Window Spectra.
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