Music 171: Fundamentals of Digital Audio

Tamara Smyth, trsmyth@ucsd.edu
Department of Music,
University of California, San Diego (UCSD)

October 15, 2019
Analog Signals

- A signal, of which a sinusoid is only one example, is a set, or sequence of numbers.

- The term “analog” refers to the fact that it is “analogous” of the signal it represents.

- A “real-world” signal is captured using a microphone which has a diaphragm that is pushed back and forth according to the compression and rarefaction of the sounding pressure waveform.

![Figure 1: The electrical signal used to represent the pressure variations of a sound wave is an analog signal.](image)

- The microphone transforms this displacement into a time-varying voltage—an analog electrical signal.
Continuous-Time Signals

- Analog signals are continuous in time.
- A continuous-time signal is an infinite and uncountable sequence of numbers, as are the possible values each number can have.
 - between a start and end time, there are infinite possible values for time \(t \) and the waveform’s instantaneous amplitude \(x(t) \).
- A continuous signal cannot be stored, or processed, in a computer since it would require infinite data.
- Analog signals must be discretized (digitized) to produce a finite set of numbers for computer use.
Discrete-Time, Digital Signals

- When analog signals are brought into a computer, they must be made *discrete* (finite and countable).
- A **discrete-time signal** is a *finite* sequence of numbers, with finite possible values for each number.
 - number values are limited by how many bits are used to represent them (*bit depth*);
 - can be stored on a digital storage medium.

- **Sampling**: the process of taking individual values of a continuous-time signal (at regular time intervals).
Analog to Digital Conversion

- The process by which an analog signal is digitized is called *analog-to-digital* or “a-to-d” conversion.

- **analog-to-digital converter (ADC):** the device that discretizes (digitizes) an analog signal.

- The ADC must accomplish two (2) tasks:
 1. **sampling:**
 - taking values (samples) at regular time intervals;
 2. **quantization:**
 - assign a number to the value (using limited computer bits).
Sampling

- **Sampling**: process of taking values (samples) of the analog waveform at regularly spaced time intervals.

\[x(t) \xrightarrow{\text{ADC}} x[n] = x(nT_s) \]

\[T_s = 1 / f_s \]

Figure 2: The ideal analog-to-digital converter.

- **Sampling Rate**: number of samples taken per second (Hz);

 - \(f_s = 48 \) kHz (professional studio)
 - \(f_s = 44.1 \) kHz (CD)
 - \(f_s = 32 \) kHz (broadcasting)

- **Sampling Period**: time interval (in seconds) between samples:

 \[T_s = 1 / f_s \] seconds.
Sampled Sinusoids

- Sampling corresponds to transforming the continuous time variable t into a set of discrete times that are integer n multiples of the sampling period T_s:
 \[t \rightarrow nT_s. \]

- Integer n corresponds to the index in the sequence.

- **Continuous sinusoid:**
 \[x(t) = A \sin(\omega t + \phi). \]

- **Discrete sinusoid**
 \[x(n) = A \sin(\omega nT_s + \phi), \]
 a sequence of numbers that may be indexed by n.
Question 1

- If the following sinusoid was sampled at $f_s = 16$ Hz,
 - what is the duration of the signal shown?

- What would the duration be if $f_s = 32$?
Answer 1

- If $f_s = 16$, what is the duration shown?

- The sampling period (time between samples) is

$$T_s = \frac{1}{16} \text{ s.}$$

Since 24 samples are shown, the duration is

$$24 \times T_s = \frac{24}{16} = \frac{3}{2} = 1.5 \text{ s.}$$
• If $f_s = 32$, the duration is shorter:

\[24 \times T_s = \frac{24}{32} = \frac{3}{4} = .75 \text{ s}. \]
Question 2

- If the following sinusoid was sampled at $f_s = 16$ Hz, what is the frequency of the sinusoid?
Answer 2 (Method 1)

• If $f_s = 16$, what is the frequency of the sinusoid?

- Method 1:
 - 16 samples corresponds to 1 second,
 - there are 2 cycles in 1 second (after 16 samples),
 - the frequency is 2 Hz.
Answer 2 (Method 2)

• If $f_s = 16$, what is the **frequency** of the sinusoid?

• **Method 2**: the **period** of the sinusoid is

\[T = 8 \times T_s = \frac{8}{16} = \frac{1}{2}, \]

and the **frequency** is

\[f = \frac{1}{T} = \frac{1}{2} = 2 \text{ Hz}. \]
• If \(f_s = 32 \), then the frequency is higher:

\[
f = \frac{1}{T} = \frac{32}{8} = 4 \text{ Hz}.
\]
Sampling and Reconstruction

• Once $x(t)$ is sampled to produce $x(n)$, *time scale information is lost.*

• $x(n)$ may represent a number of possible waveforms.

• Reconstructing at half the sampling rate ($F_s/2$) will double the time between samples ($2/F_s$), making the sinusoid **twice as long** and **halving the frequency**.
Importance of Knowing Sampling Rate

- If the signal is digitized and reconstructed using the same sampling rate, the frequency and duration will be preserved.

- If reconstruction is done using a different sampling rate, the time interval between samples changes resulting in a change in
 - overall signal duration,
 - time to complete one cycle (period) and thus sounding frequency.
Question 3

- A 220-Hz sinusoid is sampled at $f_{s1} = 44100$. It is then played on an audio system having a different sampling rate of $f_{s2} = 22050$ Hz.

 - At what **frequency** will the sinusoid sound?
• If a 220-Hz sinusoid sampled at $f_{s1} = 44100$ Hz is played back at $f_{s2} = 22050$ Hz ($f_{s1}/2$), then the

 - period between the samples will be twice as long:
 \[
 T_{s2} = \frac{1}{f_{s2}} = \frac{1}{22050} = \frac{2}{44100} = \frac{2}{f_{s1}},
 \]

 - and the period of oscillation will double:
 \[
 T_2 = 2T_1 = \frac{2}{f_1} = \frac{2}{220} \text{ s},
 \]

 - and the corresponding frequency will be halved (sound an octave lower):
 \[
 f_2 = \frac{1}{T_2} = \frac{220}{2} = 110 \text{ Hz}.
 \]
Sampling in Practice II

• In the Beatles track “In My Life” (1:28) there is a Baroque-style piano solo composed and played by George Martin:

 – piano solo

Problem: George Martin’s couldn’t play fast enough!

Solution:

 – play an octave lower and at half tempo
 – record at 1/2 sampling rate (or “speed” if analog),
 – play back at twice the rate at which it was recorded.

Effect: The distortion creates a sort of harpsichord sound at the regular tempo and pitch. Why?

• Listen to how the original sound regains a piano quality when played at 1/2 the sampling rate:

 – piano solo at 1/2 sampling rate

• Note: Beatles recordings were actually analog, but the same principles apply!
Question 4

- What is the **sampling rate** and **frequency** of the following sinusoid?

![Graph of the sinusoid](image.png)
Answer 4

- Give the sinusoid’s sampling rate and frequency.

 ![Graph showing a sinusoid with sampled points]

 - The period is 2 seconds (or, there is 1/2 cycle after 1 second) and the frequency is 1/2 Hz.
 - The sinusoid has 8 samples in 1 second and thus the sampling rate is $f_s = 8$ Hz.
 - The period has 16 samples and is thus $16 \times 1/8 = 2$ seconds long. The frequency is thus .5 Hz.
Implications of Sampling

• Is a sampled sequence only an approximation of the original?

• Is it possible to perfectly reconstruct a sampled signal?

• Will anything less than an infinite sampling rate introduce error?

• How frequently must we sample in order to “faithfully” reproduce an analog waveform?
Nyquist Sampling Theorem

• The Nyquist Sampling Theorem states that:

A bandlimited continuous-time signal can be sampled and perfectly reconstructed from its samples if the waveform is sampled over twice as fast as it’s highest frequency component.

• Nyquist limit: the highest frequency component that can be accurately represented:

\[f_{\text{max}} < \frac{f_s}{2}. \]

• Nyquist frequency: sampling rate required to accurately represent up to \(f_{\text{max}} \):

\[f_s > 2f_{\text{max}}. \]

• No information is lost if sampling above \(2f_{\text{max}} \).

• No information is gained by sampling much faster than \(2f_{\text{max}} \).

• Is \(f_s = 44,100 \) Hz (CD-quality) enough?
Digital Audio System

- **Low-pass filter (left):**
 - prevents components with frequency $> f_s/2$ from entering the ADC.

- **COMPUTER:**
 - sound storage/processing;
 - processing may introduce components with frequencies $> f_s/2$.

- **Low-pass filter (right):**
 - defines audible bandwidth up to $f_s/2$;
 - **does not** prevent introduction of components with frequency $> f_s/2$ ("damage" already done)!

- What happens when frequencies exceed $f_s/2$?
Undersampling

• If a signal is undersampled, it will be interpreted as the alias lying in the permitted range \(f < f_s/2 \);

![A 3 Hz Sinusoid (critically sampled)](image1)

![A 3 Hz Sinusoid (undersampled) is Interpreted as 1 Hz](image2)

• Undersampling a 3-Hz sinusoid at \(f_s = 4 \) causes its frequency to be interpreted as 1Hz.
What is an Alias?

- Discrete sinusoids have infinite aliases but it is the one lowest in frequency ($< f_s/2$) that will sound.

- Infinite sinusoids (with frequencies $f_0 \pm l f_s$) will produce the same sample values as the sinusoid at f_0.

- **Challenge**: show by proving the following equality:

 $$A \cos(2\pi f_0 nT_s + \phi) = A \cos(2\pi (f_0 \pm l f_s) nT_s + \phi),$$
Aliasing / Folding over

- **Top 2 plots (blue):** sinusoid has (infinite) aliases, but its frequency does not exceed $f_s/2$—GREAT!

- **Bottom 2 plots (red):** sinusoid with frequency $> f_s/2$ will have a negative frequency component with an alias in the sounding bandwidth (shaded).
Folding Frequency (Nyquist Limit)

- Let f_{in} be the input signal and f_{out} be the signal at the output (after the lowpass filter).
- If f_{in} is less than the Nyquist limit ($f_s/2$)
 \[f_{\text{out}} = f_{\text{in}}, \]
 otherwise there is a folding over $f_s/2$.

- The *folding* occurs because of aliases of the negative frequency components.
Foldover
Quantization

- Where sampling is the process of taking a sample at regular time intervals...

- **Quantization** is the process of assigning a value (from a finite number of possibilities) to the amplitude of the signal at a time sample.

- Computers use bits to store such data.

- The higher the number of bits used to represent a value, the greater the number of possible values and the more precise the sampled amplitude will be.

- With \(n \) bits, \(2^n \) possible values that can be represented.

- For CD quality audio, the number of bits is \(n = 16 \):
 - each sample can have \(2^{16} = 65,536 \) possible values;
 - the highest possible amplitude is \(2^{15} = 32,768 \), (since audio signals are positive and negative).

- Does quantization introduce error?
Quantization (linear)

- The signal below has 11 possible values to which the instantaneous amplitude may be quantized.
Quantization Error

- In a linear converter, when the actual sample value falls between these values (solid blue lines), it is quantized (or rounded) to the nearest value.

- This introduces a quantization error that will be uniformly distributed between 0 and 1/2 (error will never be greater than a factor of 1/2 the increment).
Bit Depth

- Computers use bits to store sample values—the number of bits used is called the **bit depth**: the greater the bit depth,
 - the greater the number of possible values,
 - the more precise the sampled amplitude will be.
- With n bits, 2^n possible values that can be represented.
 - for CD quality audio, $n = 16$,
 - each sample can have $2^{16} = 65,536$ possible values,
 - the highest possible amplitude is $2^{15} = 32,768$, (since audio signals are positive and negative).
Signal to Quantization Error (SQNR)

- When noise is a result of quantization error, we determine its audibility using the signal-to-quantization-noise-ratio (SQNR), determined by the ratio of
 - the maximum amplitude \((2^{n-1}) \) to
 - the maximum quantization noise (1/2 for a linear converter).

- To determine audibility, the SQNR is provided in decibels (dB):

\[
20 \log_{10} \left(\frac{2^{n-1}}{1/2} \right) \text{ dB} = 20 \log_{10} (2^n) \text{ dB}
\]
\[
= n \times 20 \log_{10}(2) \text{ dB}
\]
\[
\approx n \times 6 \text{ dB}
\]
\[
\approx 96 \text{ dB (for 16 bits)}.
\]