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Motion for a Wave

• The 1-dimensional digital waveguide model is a
discrete-time solution to the 1-dimensional wave
equation.

• To derive the equation for the transverse displacement
wave on a string, consider a small section of a string
with mass

m = µ∆x,

where µ is the mass per unit length.

∆x

∆y

θ1

θ2

T

T

• The net vertical force on this section is the difference
between the y components of the tension T 1:

Fn = T sin θ2 − T sin θ1.

1Tension is the magnitude of the force due to stretching the string
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Newton’s Law

• The slope of the string at each end of the section is
given by

m1 =
∂y1
∂x

= tan θ1

m2 =
∂y2
∂x

= tan θ2

• If the displacement of the string from equilibrium is
small, then angles θ1 and θ2 are small, and

sin θ1 ≈ tan θ1 and sin θ2 ≈ tan θ2

• The net vertical force can therefore be written as

Fn = T sin θ2 − T sin θ1 = T (m2 −m1) = T∆m.

• By Newton’s second law, F = ma,

T∆m = (µ∆x)

(

∂2y

∂t2

)

T
∆m

∆x
=

µ∂2y

∂t2
,

where acceleration is given by a = ∂2y/∂t2.
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The 1-D wave equation

• Taking the limit as ∆x −→ 0

lim
∆x→0

∆m

∆x
=

∂m

∂x
=

∂2y

∂x2
,

we obtain the one-dimensional wave equation given by

∂2y

∂t2
= c2

∂2y

∂x2
,

where c =
√

T/µ is the speed of wave propagation.
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Travelling Wave Solution

• The general class of solutions to the lossless,
one-dimensional, second-order wave equation can be
expressed as

y(t, x) = yr

(

t−
x

c

)

+ yl

(

t +
x

c

)

.

where

yr(t− x/c) , right-going traveling waves

yl(t + x/c) , left-going traveling waves

and where yr and yl are assumed twice-differentiable.

• This traveling-wave solution of the wave equation
was first published by d’Alembert in 1747.

• Notice the traveling-wave solution of the 1-D wave
equation has replaced a function of two variables
y(t, x), by two functions of a single variable in time
units2, greatly reducing computational complexity.

2If x is in meters and sound velocity c is in meters per second, x/c is in seconds and the spatial variable

x cancels out.
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Sampled Travelling Waves

• Sampling is carried out by the change of variables

x → xm = mX

t → tn = nT,

where T is the temporal sampling interval, and
X , cT , is the spatial sampling interval

• Substituting into the traveling-wave solution yields

y(tn, xm) = yr(tn − xm/c) + yl(tn + xm/c)

= yr(nT −mX/c) + yl(nT +mX/c)

= yr [(n−m)T ] + yl [(n +m)T ]

• Since T multiplies all arguments it is typically
suppressed.

• This notation is also used to model pressure in
acoustic tubes.
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Traveling Waves

• A traveling wave is any kind of wave that propagates
in a single direction with negligible change in shape.

• A delayline (pure delay) can model wave propagation
with a fixed waveshape in 1-D.

• Transverse and longitudinal waves3 in a vibrating
string are nearly perfect traveling waves.

• Plane waves are a class of traveling wave that
dominate in cylindrical bores (bore of clarinet,
cylindrical tube segments in trumpet).

• Spherical waves take the place of plane waves in
conical tubes. Because they travel like plane waves,
they are still modeled with a delay line.

3Recall, transverse and longitudinal waves are waves in which the partical displacement is perpendicular

and parallel, respectively, to the direction of the traveling wave.
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Damped Travelling Waves

• When travelling waves are damped, their losses are
distributed along the length of the system.

• Rather than applying losses at each time-step, they
may be accumulated, or lumped, at discrete points
along the delay line.

• If the losses are the same for each frequency, they
may be simulated using a simple scaling of the delay
line input or output.

z−Mx(n)

gM
y(n)

• If losses are frequency dependent they are
implemented using a digital filter G(z) with the
corresponding frequency response.

z−Mx(n) y(n)GM(z)

• The input-output simulation is exact, while the signal
samples inside the delay line have a slight gain error.

• If the internal signals are needed later, they can be
tapped out using correcting gains relative to the
tapping location.
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Losses due to spherical spreading

• In a spherical pressure wave of radius r, the energy of
the wavefront is spread out over surface area 4πr2.

• The intensity of an expending sphererical wave
decreases as 1/r2.

• This spherical spreading loss, exemplifies an
inverse square law.

• Sound pressure amplitude of a traveling wave is
proportional to the square-root of its energy/intensity,
leading to an amplitude proportional to 1/r for
spherical traveling waves.

z−Mx(n) y(n)

1/r

• Though delay lines may be used for spherical waves of
radius r, there is a gain of 1/r applied to the
output/input.

• Waves propagating a distance r0 from the cone apex
to a disance r1 from the cone apex, will experience a
pressure scaling of r0/r1.
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Converting Propagation Distance to
Delay Length

• We may regard the delay-line memory itself as the
fixed “air” that propagates sound samples at a fixed
speed c.

• The number of delay samples is the propagation
distance divided by the distance sound propagates in
one sample.

• If the listening point is d meters away from the
source, then the delay line length M needs to be

M =
d

X
=

d

cT
samples.
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Reflection of Spherical or Plane Waves

• When a wave reaches a wall or other obstacle, it is
either reflected or scattered :

– reflection occurs when the surface is flat for plane
waves, or curved with the appropriate radius (for
spherical waves);

– scattering occurs when the surface has variations
on the scale of the spatial wavelength.

Absorption

• In air, there is always significant additional
(frequency-dependent) loss caused by air absorption.

• Wave propagation in vibrating strings undergoes an
analogous absorption loss, as does the propagation of
nearly every other kind of wave in the physical world.
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Reflection at a Fixed End of String

• Consider the displacement of a string at the boundary
x = 0:

y = yr(t− 0/c) + yl(t + 0/c)

= yr(t) + yl(t).

• If fixed, it’s displacement y is zero:

yr(t) + yl(t) = 0

yr(t) = −yl(t).

the reflected wave is equal but opposite to
the right traveling wave.

• See animation: Reflection from a fixed boundary
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Reflection at a Free End of the String

• At x = 0, if a string is free there is no transverse

force.

• Net transverse force is proportional to the slope
∂y/∂x:

∂y

∂x
=

∂

∂x
yr(t− x/c) +

∂

∂x
yl(t + x/c)

=
1

c
[yl(t + 0/c)− yr(t− 0/c)]

= 0

yr(t) = yl(t).

The reflected wave is equal to the incident
wave with no change of sign.

• See animation: Reflection from a free boundary
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Standing Waves

• Reflection causes destructive and constructive
interference, leading to standing waves.

• Standing Waves:

– created by the sum or right and left traveling
waves:

standing wave animation

– it is a pattern of alternating nodes and antinodes

nodes and antinodes animation

– the fundamental mode of oscillation, is determined
by the shortest node-antinode pattern.

• Standing waves created from a fixed boundary:

– animation of standing waves, fixed

• Standing waves created from a free boundary:

– animation standing waves, free
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Guitar String

• The guitar string is fixed at both ends—therefore it
has a node at both ends.

Figure 1: Standing waves on a guitar string.

• For string length L and each harmonic number n,

– the wavelength is λn =
2

n
L.

– the fundamental frequency is

fn =
c

λn
= n

c

2L
= nf1.

Music 206: Digital Waveguides 15



Wave Impedance

• The wave impedance

– represents the medium’s resitance to distortion
in the presence of an external force;

– a characteristic of the medium in which a wave
propagates and given by:

Z =
F

v
=

p

U
,

v , particle velocity;

p = F/A , acoustic pressure;

U = v/A , volume velocity (airflow);

A , medium cross-sectional area.

• For solids,
Z0 = ρc,

where ρ is the density of the material.

• For gases in cylindrical tubes with a cross sectional
area of A,

Z0 =
ρc

A
.
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Reflection due to Change of Impedance

• It is possible to have a boundary which is neither
completely fixed nor completely free.

• When a wave traveling in a medium with impedance
Z1 confronts a new medium with impedance Z2,

– incident wave will be partially reflected;

– amplitude and polarity of reflected wave
dependent on the impedance of the two mediums.

medium 2 (Z2)medium 1 (Z1)

x = 0 x = J

incident wave
transmitted wave

reflected wave

• What is not reflected at the boundary is transmitted
through to the new medium.
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Boundary Conditions

medium 2 (Z2)medium 1 (Z1)

x = 0 x = J

incident wave
transmitted wave

reflected wave

• The pressure and velocity at the junction must be
equal (continuity—they are shared by both mediums).

• The pressure at the junction is given by

p(J) = pi(J) + pr(J),

pi(J) , the indicident wave at the junction

pr(J) , the reflected wave at the junction.

• The incident and reflected pressure waves correspond
to incident and reflected airflow U by

pi(J) = Z1Ui(J)

and
pr(J) = −Z1Ur(J),

– the negative sign accounts for the fact that airflow
is a directional quantity and moves in the direction
in which it generates pressure.
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Volume Velocity at Junction

• Volume velocity at the junction is the sum of the
incident and reflected velocity waves:

U (J) = Ui(J) + Ur(J).

• Incorporating the result for the incident pressure wave:

pi(J) = Z1Ui(J),

and reflected pressure wave:

pr(J) = −Z1Ur(J),

volume velocity at the junction is

U (J) =
1

Z1
(pi(J)− pr(J)).
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Calculating reflection coefficient
(pressure)

• The new medium at the junction has impedance

Z2 =
p(J)

U (J)

=
pi(J) + pr(J)

(pi(J)− pr(J))/Z1

= Z1

(

pi(J) + pr(J)

pi(J)− pr(J)

)

.

• This result can be used to calculate the reflection
coefficient pr/pi:

Z1
pi + pr
pi − pr

= Z2

Z1(pi + pr) = Z2(pi − pr)

pr(Z2 + Z1) = pi(Z2 − Z1)
pr
pi

=
Z2 − Z1

Z2 + Z1
.
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Calculating reflection coefficient
(velocity)

• Likewise, the new impedance Z2 may be given in
terms of velocity components

Z2 =
p(J)

U (J)
= Z1

Ui(J)− Ur(J)

Ui(J) + Ur(J)

• The reflection coefficient is calculated as:

Z1
Ui − Ur

Ui + Ur
= Z2

Z1(Ui − Ur) = Z2(Ui + Ur)

Ui(Z1 − Z2) = Ur(Z1 + Z2)
Ur

Ui
=

Z1 − Z2

Z1 + Z2
.
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Applying to Reflections on String

• Consider a string free at one end (Z2 = 0).

– Using displacement velocity as the wave variable:

vr
vi

=
Z1 − Z2

Z1 + Z2
=

Z1

Z1
= 1,

reflected velocity wave = incident velocity wave.

– The total velocity at the junction (boundary) is

v = vi + vr = vi + vi = 2vi.

• If the string is fixed at one end, new impedance
approaches infinity (Z2 ≫ Z1):

vr
vi

=
Z1 − Z2

Z1 + Z2
≈ −

Z2

Z2
= −1,

where Z1 is considered to be negligible.

• The velocity at the boundary is therefore

v = vi + vr = vi − vi = 0.
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Applying to Reflection in a Tube

• Recall that impedance for air in a confined space is
inversely proportional to it’s area (the smaller the
area, the larger the impedance).

• For a tube open at one end

– assume the wave impedance of open air is
negligible to that of the tube cylindrical section:

– the reflection coefficient for pressure at an open
end is

pr
pi

=
Z2 − Z1

Z2 + Z1
= −

Z1

Z1
= −1.

• For a tube closed at one end

– assume an infinitely small radius and a
corresponding wave impedance Z2 that is very
large relative to Z1:

pr
pi

=
Z2 − Z1

Z2 + Z1
=

Z2

Z2
= 1.
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Wave Variables

• Displacement, velocity and acceleration waves all
reflect with the same polarity:

rx,v,a =
Z1 − Z2

Z1 + Z2
.

• Force and pressure waves however, reflect with an
opposite polarity:

rf,p =
Z2 − Z1

Z2 + Z1
.
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The Plucked String

• When a string is plucked, the finger chooses a point
on the string and then displaces it a certain distance.

• Plucking a string therefore, introduces an initial
energy displacement (potential energy).

• The shape of the string before its release defines
which harmonics will be present in the resulting
motion.

• A string plucked at 1/nth the distance from one end
will not have energy at multiples of the nth harmonic.

• The strength of excitation of the mth vibrational
mode is inversely proportional to the square of the
mode number.

• A simple example is demonstrated by plucking the
string exactly midway between its endpoints. In so
doing, we have created a sort of triangle wave, with
its corresponding harmonics.
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Figure 2: The motion of a string plucked one-half of the distance from one end.
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String Spectrum

Figure 3: Spectrum of a string plucked one-half of the distance from one end.
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Pluck position

• Take for example the motion of a string plucked
one-fifth of the distance from the end.

Figure 4: The motion of a string plucked one-fifth of the distance from one end.

• The motion can be thought of as two pulses moving
in opposite directions (see the dashed line).

• The resulting motion consists of two bends, one
moving clockwise and the other counterclockwise
around a parallelogram.
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Resulting Plucked String Spectrum

• The resulting spectrum of the string plucked one-fifth
of the distance from one end is given below.

Figure 5: Spectrum of a string plucked one-fifth of the distance from one end.
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Digital Waveguides

• A digital waveguide is a sampled traveling-wave
simulation for waves in ideal strings or acoustic tubes.

• A (lossless) digital waveguide is defined as a
bidirectional delay line at some wave impedance R.

z−N

z−N

R

• As before, each delay line contains a sampled acoustic
traveling wave. However, since we now have a
bidirectional delay line, we have two traveling waves,
one to the “left” and one to the “right”.

• While a single delay line can model an acoustic plane
wave, a digital waveguide can model any
one-dimensional linear acoustic system such as a
violin string or a clarinet bore.

• In real acoustic strings and bores, the 1D waveguides
exhibit some loss and dispersion so some filtering will
be needed in the waveguide to obtain an accurate
physical model of such systems.
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Physical Outputs

• Physical variables (force, pressure, velocity, ...) are
obtained by summing traveling-wave components.

z−N

z−N

Physical Signal

• To determine the value at any physical point, extract
a physical signal from a digital waveguide using
delay-line taps.

• The physical wave vibration is obtained by summing
the left- and right-going traveling waves.

• The two traveling waves in a digital waveguide are
now components of a more general acoustic vibration.

• A traveling wave by itself in one of the delay lines is
no longer regarded as “physical” unless the signal in
the opposite-going delay line is zero.
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Plucked String Model

In this string simulator, there is a loop of delay containing

N = 2L/X = fs/f1 samples

where f1 is the desired pitch of the string and L is the
physical length of the string.

Nut-1

G(ejω)

z−N/2

z−N/2

Physical Signal

-1

y(n)+ y(n−N/2)+

y(n)− y(n−N/2)−

(rigid
termination)

Bridge

(rigid
termination)

Low-pass

• What is the impulse response of this structure?

• Define an input x(n) and an output y(n).
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