Music 171: Introduction to Delay and Filters

Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD)

November 21, 2019

Digital Filters

- Filter: any medium through which a signal passes.
- Typically, a filter modifies the signal in some way:
 - audio speakers / headphones
 - rooms / acoustic spaces
 - musical instruments
- A digital filter is a formula for going from one digital signal (input x(n)) to another (output y(n)):

Figure 1: A black box filter.

Inside the Black Box—Pure Delay

- Digital filters typically involve signal *delay*.
- Delaying an audio signal is to
 - move it (earlier/later) in time;
 - change the **phase** of signal (the value at time=0).

Time shifting a signal

• When a signal can be expressed in the form

$$y(n) = x(n - M),$$

y(n) is a *delayed* (time-shifted) version of x(n).

- $\bullet \ y(n) = x(n-M)$: x(n) is **delayed** M samples:
 - shift is to the **right** on the time axis.
- y(n) = x(n+M): x(n) is advanced M samples:
 - shift is to the **left** on the time axis.

The Delay Line

- The delay line is a functional unit that models acoustic propagation delay.
- It is a fundamental building block of *delay effects* processors.
- ullet The function of a delay line is introduce a time delay of M samples or

$$au = M/f_{\scriptscriptstyle S}$$
 seconds

between its input and output.

$$x(n)$$
 \longrightarrow M sample delay \longrightarrow $y(n)$

$$y(n) = x(n - M), \quad n = 0, 1, 2, \dots$$

Time shift and addition

• Other than possible silence, there is no audible effect of a *pure* delay.

$$x(n)$$
 and $x(n-M)$ sound the same

ullet Change arises, however, when a signal x(n) is added to a delayed version of itself x(n-M):

$$y(n) = x(n) + x(n - M)$$

A Running Averager

ullet Consider a simple case where M=1.

$$y(n) = x(n) + x(n-1).$$

- (Dividing by 2), this filter **averages** adjacent samples.
 - that is, output y(n) is a *running average* of input x(n) with a gain of 2.

This filter takes the average of two adjacent samples.

Intuitive Analyis at Low Frequencies

• Consider input at 0 Hz (lowest possible frequency):

$$x_1(n) = [A, A, A, ...].$$

(at 0 Hz there is no change from sample to sample).

The output is

$$y(n) = x_1(n) + x_1(n-1)$$

= $[A, A, A, ...]$
+ $[0, A, A, A, ...]$
= $[A, 2A, 2A, 2A, ...]$
 $\approx 2x_1(n)$ (except 1st sample).

The filter has a gain of 2 at the lowest frequency.

Intuitive Analyis at High Frequencies

• Consider input at $\frac{f_s}{2}$ Hz (highest possible frequency):

$$x_2(n) = [A, -A, A, -A, ...].$$

(maximum change from sample to sample).

The output of the filter is

$$y(n) = x_2(n) + x_2(n-1)$$

= $[A, -A, A, -A, ...]$
+ $[0, A, -A, A, ...]$
= $[A, 0, 0, 0, ...]$
 $\approx 0x_2(n)$ (except 1st sample).

The filter has a gain of 0 the highest frequency.

• A filter that boosts low frequencies while attenuating higher frequencies is called a **lowpass filter**.

What about frequencies in between?

- Filter behaviour can be determined
 - using sinusoids at every possible frequency between 0 and $f_s/2$ Hz;
 - using an input signal that contains all frequency components and check just once!
- Impulse: signal with the broadest possible spectrum.

• Impulse Response (IR): response to an impulse (e.g. irCave.wav).

Simple Lowpass Frequency Response

• Frequency response:

- spectrum of the impulse response;
- shows how filter modifies frequency components.
- ullet Frequency response of y(n)=x(n)+x(n-1):

Changing Filter Coefficients

• The **difference** (instead of the sum) of adjacent samples:

$$y(n) = x(n) - x(n-1).$$

is like changing the *coefficient* of x(n-1) to -1.

• At 0 Hz:

$$y(n) = x_1(n) - x_1(n-1)$$

$$= [A, A, A,]$$

$$- [0, A, A, A,]$$

$$= [A, 0, 0, 0,]$$

$$\approx 0x_1(n).$$

• At $f_s/2$ Hz:

$$y(n) = x_2(n) - x_2(n-1)$$

$$= [A, -A, A, -A, ...]$$

$$- [0, A, -A, A, ...]$$

$$= [A, -2A, 2A, -2A, ...]$$

$$\approx 2x_2(n).$$

Simple Highpass Frequency Response

• Frequency response shows a highpass filter.

• Notice the same cutoff frequency as simple lowpass.

Notch Filter

Changing the delay of the second term (and adding):

$$y(n) = x(n) + x(n-2),$$

has output

$$\begin{array}{l} - \text{ at 0 Hz } (x_1(n) = [A,A,A,\ldots]) \colon \\ y(n) &= [A,A,A,\ldots] + [0,0,A,A,\ldots] \\ &= [A,A,2A,2A,\ldots] \approx 2x_1(n) . \\ \\ - \text{ at } f_s/2 \text{ Hz } (x_2(n) = [A,-A,A,-A,\ldots]) \colon \\ y(n) &= [A,-A,A,-A,\ldots] + [0,0,A,-A,A\ldots] \\ &= [A,-A,2A,-2A,\ldots] \approx 2x_2(n) \end{array}$$

- This filter boosts both low and high frequencies!
- Output at $f_s/4$ Hz $(x_3(n) = [A, 0, -A, 0, A, 0, ...])$:

$$y(n) = x_3(n) + x_3(n-2)$$

= $[A, 0, -A, 0, A, ...] + [0, 0, A, 0, -A, 0, ...]$
= $[A, 0, 0, 0, ...] \approx 0x_3(n)$

Simple Notch Frequency Response

• Frequency response shows a *notch* filter.

• Notice cutoff frequency is half of that for lowpass.

Bandpass Filter

• Changing coefficient of x(n-2) to -1:

$$y(n) = x(n) - x(n-2),$$

yields output

— at 0 Hz:

$$y(n) = [A, A, A,] - [0, 0, A, A, ...]$$

= $[A, A, 0, 0, ...] \approx 0x(n)$.

- at $f_s/2$ Hz:

$$y(n) = [A, -A, A, -A,] - [0, 0, A, -A, A...]$$

= $[A, -A, 0, 0, ...] \approx 0x(n)$.

- at $f_s/4$ Hz:

$$y(n) = [A, 0, -A, 0A, \dots] - [0, 0, A, 0, -A, 0, \dots]$$

= $[A, 0, -2A, 0, 2A, 0, -2A, 0, \dots] \approx 2x(n)$.

ullet Attenuation is at 0 and $f_s/2$ Hz, and boosts $f_s/4$

Bandpass Filter Frequency Response

• The filter frequency (amplitude) response for

$$y(n) = x(n) - x(n-2)$$

shows it is a bandpass filter.

• The bandwidth is determined by the frequency separation between the two cutoff points.

Plots of simple filters

Figure 2: Amplitude Responses for simple filters

Music 171: Introduction to Delay and Digital Filters

Increasing the phase delay

• Make the delay of the 2^{nd} term variable:

$$y(n) = x(n) + x(n - M)$$

ullet Effects of increasing the M (the filter *order*):

- Notice regularly spaced peaks and notches.
- Notches at odd harmonics of what frequency?

Cancellation at Notch Frequencies

• Consider a sinusoid at $f = 1/(2\tau)$ (period of 2τ):

ullet Delaying that sinusoid by au (1/2 a period) yields:

• Summing with original yields complete cancellation:

Listen to Cancellation in Pd

• comb11.21.19.pd

Cancellation at Odd Harmonics

• Adding to a sinusoid at $f=1/(2\tau)$ a version of itself delayed by τ yields cancellation at $f=1/(2\tau)$,

• but also at $f = 3/(2\tau)$,

 \bullet and at $5/(2\tau)$

ullet and at all **odd** harmonics of $f=1/(2\tau)$.

Relating τ to delay of M samples

- \bullet For y(n)=x(n)+x(n-M) delay is M samples or $\tau = \frac{M}{fs} \text{ seconds}.$
- There is complete attenuation (notch) at frequency

$$f = \frac{1}{2\tau} = \frac{1}{2M/f_s} = \frac{f_s}{2M}$$

and at odd harmonics $3f, 5f, \dots$ (up to Nyquist limit).

• For M=1 (lowpass) there is 1 notch at $f_s/2$.

• For M=6 there are notches at $f_s/12, f_s/4, 5f_s/12$.

Feedforward Comb Filter

• Regular (comb-like) spacing of peaks/notches suggests **harmonics** of a fundamental frequency f_0 .

• If notches are at **odd** harmonics of

$$f_n = \frac{1}{2\tau},$$

then peaks are at harmonics of

$$f_0 = 2f_n = \frac{2}{2\tau} = \frac{1}{\tau}.$$

• For a desired fundamental (sounding) frequency f_0 :

$$au = rac{1}{f_0} ext{ seconds} \qquad ext{OR} \qquad M = rac{f_s}{f_0} ext{ samples}.$$

Feedforward Comb Filter in Pd

• see ffcomb2.pd.

Feedforward Comb Coefficient

• Introducing a coefficient allows for control of cancellation amount and the **depth** of notches:

The Feedback Comb Filter

ullet What happens when the output of a delay line is multiplied by gain g < 1 then fed back to the input?

• The difference equation for this filter is

$$y(n) = x(n) + gy(n - M),$$

• If the input to the filter is an impulse

$$x(n) = \{1, 0, 0, \ldots\}$$

the output (impulse response) will be ...

Feeback Comb Filter Frequency

- Pulses are equally spaced in time at interval $\tau = M/f_s$ seconds.
- It is periodic and will sound at frequency $f_0 = 1/\tau$.

• Spacing between the maxima of the comb "teeth" is equal to the natural frequency f_0 .

Feedback Comb Filter in Pd

Effect of the Feedback coefficient

- ullet Minima depth and maxima height controlled by g.
- Values closer to 1 yield more extreme max/min.

Comb Filter Decay Rate

- The response decays exponentially as determined by the loop time and gain factor g.
- Values of g nearest 1 yield the longest decay times.
- ullet To obtain a desired decay time, g may be approximated by

$$g = 0.001^{\tau/T_{60}}$$

where

 $au = ext{the loop time}$ $T60 = ext{the time to decay by 60dB}$

and 0.001 is the level of the signal at 60dB down.

Figure 3: Comb filter impulse responses with a changing the decay rate.

A very simple string model

• A very simple string model can be implemented using a single delay line and our simple first-order low pass filter to model frequency-dependent loss.

Figure 4: A very simple model of a rigidly terminated string.

 All losses have been *lumped* to a single observation point in the delay line, and approximated with our first-order simple low-pass filter

$$y(n) = x(n) + x(n-1)$$

- Different sounds can be created by changing this filter.
- The Karplus-Strong Algorithm may be interpreted as a feedback comb filter (with lowpassed feedback) or a simplified digital waveguide model.
- How do you *pluck* the string? (noise burst.)