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Digital Filters

e Filter: any medium through which a signal passes.
e Typically, a filter modifies the signal in some way:

— audio speakers / headphones
— rooms / acoustic spaces
— musical instruments

e A digital filter is a formula for going from one digital
signal (input x(n)) to another (output y(n)):

x(n) y(n)

Figure 1: A black box filter.
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Inside the Black Box—Pure Delay

e Digital filters typically involve signal delay.
e Delaying an audio signal is to

— move it (earlier/later) in time;

— change the phase of signal (the value at time=0).

Signal Delay of .33 seconds
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Time shifting a signal

e When a signal can be expressed in the form
y(n) is a delayed (time-shifted) version of x(n).
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e yn)=x(n— M): z(n) is delayed M samples:
— shift is to the right on the time axis.
e yn)=xz(n+ M): x(n)is advanced M samples:

— shift is to the left on the time axis.
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The Delay Line

e The delay line is a functional unit that models
acoustic propagation delay.

e It is a fundamental building block of delay effects
processors.

e The function of a delay line is introduce a time delay
of M samples or

T = M/ fs seconds

between its input and output.

x(n) — M sample delay —y(n)

yn)=xzn—-M), n=0,1,2,...
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Time shift and addition

e Other than possible silence, there is no audible effect
of a pure delay.

x(n) and x(n — M) sound the same

noise~
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.
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myoutput

X

e Change arises, however, when a signal z(n) is added
to a delayed version of itself x(n — M):

y(n) = x(n) +a(n — M)
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A Running Averager

e Consider a simple case where M = 1.
y(n) =x(n)+x(n —1).
e (Dividing by 2), this filter averages adjacent
samples.

— that is, output y(n) is a running average of input
x(n) with a gain of 2.

This filter takes the average of two adjacent samples.
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Intuitive Analyis at Low Frequencies

e Consider input at 0 Hz (lowest possible frequency):
ri(n) =[AA A, ...
(at 0 Hz there is no change from sample to sample).
e The output is
y(n) = xi(n) +a1(n—1)
= |[A A A, ...
+ 10, A, A A, ..]
= [A,24,2A,2A,..]
2x1(n) (except lst sample).

Q

The filter has a gain of 2 at the lowest frequency.
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Intuitive Analyis at High Frequencies

e Consider input at % Hz (highest possible frequency):
ro(n) =[A, —A A —A, ...
(maximum change from sample to sample).
e The output of the filter is
y(n) = a(n) +x2(n —1)
= [A —-A A —A, .
+[0,A,—A A, ..]

4,0,0,0, ..
Ozo(n) (except 1lst sample).

Q

The filter has a gain of 0 the highest frequency.

e A filter that boosts low frequencies while attenuating
higher frequencies is called a lowpass filter.
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What about frequencies in between?

e Filter behaviour can be determined

— using sinusoids at every possible frequency
between 0 and f,/2 Hz;

— using an input signal that contains all
frequency components and check just once!

e Impulse: signal with the broadest possible spectrum.

x(n)

x(n-1)

x(n) + x(n-1)

e Impulse Response (IR): response to an impulse
(e.g. irCave.wav).
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Simple Lowpass Frequency Response

e Frequency response:

— spectrum of the impulse response;

— shows how filter modifies frequency components.
e Frequency response of y(n) = x(n) + x(n — 1):

Frequency Response Magnitude

2 T

T

=

©
T
I

=

o
T
I

cutoff frequency f c

amplitude (linear)

o o = =
o] [e0] [l N N
T T T T T

| | | |

©

D
T
I

o
N
T
|

0 I I I
0 f /8 f /14 3f /18 f /2
s s s s

frequency (kHz)

Music 171: Introduction to Delay and Digital Filters

11



Changing Filter Coefficients

e The difference (instead of the sum) of adjacent
samples:

y(n) =xz(n) —x(n —1).
is like changing the coefficient of x(n — 1) to -1.

e At 0 Hz:

y(n) = zi(n) —a1(n — 1)
— JAAA, ]
(0,4, A A, ]
— [4,0,0,0,..]
0z1(n).

Q

y(n) = za(n) — as(n — 1)
— A A A A ]
0, A —A A, ]
A, —24,24, —2A, ]
2w9(n).

Q
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Simple Highpass Frequency Response

e Frequency response shows a highpass filter.

Frequency Response Magnitude
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e Notice the same cutoff frequency as simple lowpass.
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Notch Filter

e Changing the delay of the second term (and adding):
y(n) = z(n) +x(n - 2),
has output
—at 0 Hz (z1(n) = [4, A, A, ....]):
yn) = [A A A ....]+ [0,0,A,A,..]
= [A, A, 2A,2A, ...] = 2x1(n).
—at fs/2 Hz (z2(n) = [A,—A, A, —A, ...]):
y(n) = [A,—A A —A,...]+0,0,A,—A A..]
= [A, —A2A, —2A,...] = 2x9(n)
e This filter boosts both low and high frequencies!
e Output at f,/4 Hz (z3(n) = [A4,0,—A,0, A,0,...]):

y(n) = $3(n>+$3(n_2>
= [4,0,—A,0, A, ...]+[0,0, 4,0, - A,0, ...
= [A,0,0,0,...] = 0z3(n)
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Simple Notch Frequency Response

e Frequency response shows a notch filter.

Frequency Response Magnitude
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e Notice cutoff frequency is half of that for lowpass.
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Bandpass Filter

e Changing coefficient of z(n — 2) to -1:

y(n) = x(n) —x(n —2),
yields output
—at 0 Hz:

yn) = [A A A, ....] — [0,0,A,A,..]
= [A,A,0,0,...] = 0z(n).

—at fs/2 Hz:

yn) = [A,—A A —A,...]— [0,0,A,—A A..]
= [A,—A,0,0,...] = 0x(n).

—at fs/4 Hz:

y(n) = [A,0,—A,0A,...] — [0,0,A4,0,—A,0,...]
= [A,0,—2A,0,24,0,—2A,0, ...] = 2x(n).

e Attenuation is at 0 and f;/2 Hz, and boosts f,/4
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Bandpass Filter Frequency Response

e The filter frequency (amplitude) response for

y(n) = x(n) —x(n —2)
shows it is a bandpass filter.

Frequency Response Magnitude
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e The bandwidth is determined by the frequency
separation between the two cutoff points.
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Plots of simple filters

Amplitude Response for y(n) = x(n)+x(n-1) Amplitude Response for y(n) = x(n)—x(n—1)
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Figure 2: Amplitude Responses for simple filters
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Increasing the phase delay

e Make the delay of the 2"¢ term variable:
y(n) = z(n) +x(n — M)
e Effects of increasing the M (the filter order):

Frequency Response Magnitude
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e Notice regularly spaced peaks and notches.

e Notches at odd harmonics of what frequency?
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Cancellation at Notch Frequencies

e Consider a sinusoid at f = 1/(27) (period of 27):

0 0.05 0.1 0.15 0.2 0.25 0.3
time (s)

e Delaying that sinusoid by 7 (1/2 a period) yields:

0 0.05 0.1 0.15 0.2 0.25 0.3
time (s)

e Summing with original yields complete cancellation:
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Listen to Cancellation in Pd

|HEE | frequency to cancel

delwrite~ dline EEEE|

delread- dline 1666

--

myoutput

iy

e comb11.21.19.pd
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Cancellation at Odd Harmonics

e Adding to a sinusoid at f = 1/(27) a version of itself
delayed by 7 yields cancellation at f = 1/(27),
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[EEY
T

(=]

|
|_\

[EEY

o

|_\

Mus

ic 171: Introduction to Delay and Digital Filters 22



Relating 7 to delay of M samples

e For y(n) = z(n) + z(n — M) delay is M samples or

M
T = —— seconds.
fs
e There is complete attenuation (notch) at frequency
1 1 fs

f=5= OM/f,  2M
and at odd harmonics 3f,5f, ... (up to Nyquist limit).
e For M =1 (lowpass) there is 1 notch at f,/2.

Frequency Response Magnitude
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e For M = 6 there are notches at f,/12, f;/4,5fs/12.
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Feedforward Comb Filter

e Regular (comb-like) spacing of peaks/notches
suggests harmonics of a fundamental frequency fj.

2

100 200 300 400 500 600 700 800 900 1000
frequency (Hz)

e If notches are at odd harmonics of

1
fn — Ea
then peaks are at harmonics of
2 1
T T
e For a desired fundamental (sounding) frequency fj:
1 s
T = — seconds OR M = == samples.
Jo 0
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Feedforward Comb Filter in Pd

e see ffcomb2.pd.
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Feedforward Comb Coefficient

e Introducing a coefficient allows for control of
cancellation amount and the depth of notches:

Comb Amplitude response for DEPTH 0.2
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The Feedback Comb Filter

e What happens when the output of a delay line is
multiplied by gain g < 1 then fed back to the input?

v(n) —=(4) ~y(n)

g
T_<]7 M sample delay [T

e The difference equation for this filter is

y(n) = x(n) + gy(n — M),

e If the input to the filter is an impulse
z(n) ={1,0,0,...}

the output (impulse response) will be ...

-

A

Amplitude
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Feeback Comb Filter Frequency

e Pulses are equally spaced in time at interval
T = M/ f, seconds.

e It is periodic and will sound at frequency fy = 1/7.

Feedback comp filter with coefficient g = 0.8
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e Spacing between the maxima of the comb “teeth” is
equal to the natural frequency fj.
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Feedback Comb Filter in Pd

[delwrite~ myfbcomb 1000

delread~ myfbcomb 2

lowpass filter for string

g coefficent |lnp~ 358@|

'. output is fed back to delayline input
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Effect of the Feedback coefficient

e Minima depth and maxima height controlled by g.

e Values closer to 1 yield more extreme max/min.

Comp filter feedback coefficient g = 0.1
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Comb Filter Decay Rate

e The response decays exponentially as determined by
the loop time and gain factor g.

e Values of g nearest 1 yield the longest decay times.

e To obtain a desired decay time, g may be
approximated by

g = 0.0017/Te0
where

7 = the loop time
T'60 = the time to decay by 60dB

and 0.001 is the level of the signal at 60dB down.
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fO = 220.5 Hz, T60 = .25 (blue), .5 (green), and .75 (red) seconds
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Figure 3: Comb filter impulse responses with a changing the decay rate.
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A very simple string model

e A very simple string model can be implemented using
a single delay line and our simple first-order low pass
filter to model frequency-dependent loss.

y(n) y(n — N)

> z

H(z) =

Figure 4: A very simple model of a rigidly terminated string.

e All losses have been lumped to a single observation
point in the delay line, and approximated with our
first-order simple low-pass filter

y(n) = x(n) +z(n—1)
e Different sounds can be created by changing this
filter.

e The Karplus-Strong Algorithm may be interpreted as
a feedback comb filter (with lowpassed feedback)
or a simplified digital waveguide model.

e How do you pluck the string? (noise burst.)
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