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Digital Filters

• Filter: any medium through which a signal passes.

• Typically, a filter modifies the signal in some way:

– audio speakers / headphones

– rooms / acoustic spaces

– musical instruments

• A digital filter is a formula for going from one digital
signal (input x(n)) to another (output y(n)):
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Figure 1: A black box filter.
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Inside the Black Box—Pure Delay

• Digital filters typically involve signal delay.

• Delaying an audio signal is to

– move it (earlier/later) in time;

– change the phase of signal (the value at time=0).
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Time shifting a signal

• When a signal can be expressed in the form

y(n) = x(n−M),

y(n) is a delayed (time-shifted) version of x(n).
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• y(n) = x(n−M): x(n) is delayed M samples:

– shift is to the right on the time axis.

• y(n) = x(n +M): x(n) is advanced M samples:

– shift is to the left on the time axis.
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The Delay Line

• The delay line is a functional unit that models
acoustic propagation delay.

• It is a fundamental building block of delay effects
processors.

• The function of a delay line is introduce a time delay
of M samples or

τ = M/fs seconds

between its input and output.

x(n) y(n)M sample delay

y(n) = x(n−M), n = 0, 1, 2, . . .
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Time shift and addition

• Other than possible silence, there is no audible effect
of a pure delay.

x(n) and x(n−M) sound the same

• Change arises, however, when a signal x(n) is added
to a delayed version of itself x(n−M):

y(n) = x(n) + x(n−M)
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A Running Averager

• Consider a simple case where M = 1.

y(n) = x(n) + x(n− 1).

• (Dividing by 2), this filter averages adjacent
samples.

– that is, output y(n) is a running average of input
x(n) with a gain of 2.

This filter takes the average of two adjacent samples.
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Intuitive Analyis at Low Frequencies

• Consider input at 0 Hz (lowest possible frequency):

x1(n) = [A,A,A, ...].

(at 0 Hz there is no change from sample to sample).

• The output is

y(n) = x1(n) + x1(n− 1)

= [A,A,A, ....]

+ [0, A, A,A, ...]

= [A, 2A, 2A, 2A, ...]

≈ 2x1(n) (except 1st sample).

The filter has a gain of 2 at the lowest frequency.
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Intuitive Analyis at High Frequencies

• Consider input at
fs
2

Hz (highest possible frequency):

x2(n) = [A,−A,A,−A, ...].

(maximum change from sample to sample).

• The output of the filter is

y(n) = x2(n) + x2(n− 1)

= [A,−A,A,−A, ...]

+ [0, A,−A,A, ...]

= [A, 0, 0, 0, ...]

≈ 0x2(n) (except 1st sample).

The filter has a gain of 0 the highest frequency.

• A filter that boosts low frequencies while attenuating
higher frequencies is called a lowpass filter.
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What about frequencies in between?

• Filter behaviour can be determined

– using sinusoids at every possible frequency
between 0 and fs/2 Hz;

– using an input signal that contains all
frequency components and check just once!

• Impulse: signal with the broadest possible spectrum.

x(n)

x(n−1)

x(n) + x(n−1)

• Impulse Response (IR): response to an impulse
(e.g. irCave.wav).
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Simple Lowpass Frequency Response

• Frequency response:

– spectrum of the impulse response;

– shows how filter modifies frequency components.

• Frequency response of y(n) = x(n) + x(n− 1):
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Changing Filter Coefficients

• The difference (instead of the sum) of adjacent
samples:

y(n) = x(n)− x(n− 1).

is like changing the coefficient of x(n− 1) to -1.

• At 0 Hz:

y(n) = x1(n)− x1(n− 1)

= [A,A,A, ....]

− [0, A, A,A, ...]

= [A, 0, 0, 0, ...]

≈ 0x1(n).

• At fs/2 Hz:

y(n) = x2(n)− x2(n− 1)

= [A,−A,A,−A, ...]

− [0, A,−A,A, ...]

= [A,−2A, 2A,−2A, ...]

≈ 2x2(n).
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Simple Highpass Frequency Response

• Frequency response shows a highpass filter.
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• Notice the same cutoff frequency as simple lowpass.
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Notch Filter

• Changing the delay of the second term (and adding):

y(n) = x(n) + x(n− 2),

has output

– at 0 Hz (x1(n) = [A,A,A, ....]):

y(n) = [A,A,A, ....] + [0, 0, A, A, ...]

= [A,A, 2A, 2A, ...] ≈ 2x1(n).

– at fs/2 Hz (x2(n) = [A,−A,A,−A, ...]):

y(n) = [A,−A,A,−A, ....] + [0, 0, A,−A,A...]

= [A,−A, 2A,−2A, ...] ≈ 2x2(n)

• This filter boosts both low and high frequencies!

• Output at fs/4 Hz (x3(n) = [A, 0,−A, 0, A, 0, ...]):

y(n) = x3(n) + x3(n− 2)

= [A, 0,−A, 0, A, ....] + [0, 0, A, 0,−A, 0, ...]

= [A, 0, 0, 0, ...] ≈ 0x3(n)
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Simple Notch Frequency Response

• Frequency response shows a notch filter.
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• Notice cutoff frequency is half of that for lowpass.
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Bandpass Filter

• Changing coefficient of x(n− 2) to -1:

y(n) = x(n)− x(n− 2),

yields output

– at 0 Hz:

y(n) = [A,A,A, ....]− [0, 0, A, A, ...]

= [A,A, 0, 0, ...] ≈ 0x(n).

– at fs/2 Hz:

y(n) = [A,−A,A,−A, ....]− [0, 0, A,−A,A...]

= [A,−A, 0, 0, ...] ≈ 0x(n).

– at fs/4 Hz:

y(n) = [A, 0,−A, 0A, ....]− [0, 0, A, 0,−A, 0, ...]

= [A, 0,−2A, 0, 2A, 0,−2A, 0, ...] ≈ 2x(n).

• Attenuation is at 0 and fs/2 Hz, and boosts fs/4
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Bandpass Filter Frequency Response

• The filter frequency (amplitude) response for

y(n) = x(n)− x(n− 2)

shows it is a bandpass filter.
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• The bandwidth is determined by the frequency
separation between the two cutoff points.
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Plots of simple filters
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Figure 2: Amplitude Responses for simple filters

.

Music 171: Introduction to Delay and Digital Filters 18



Increasing the phase delay

• Make the delay of the 2nd term variable:

y(n) = x(n) + x(n−M)

• Effects of increasing the M (the filter order):
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• Notice regularly spaced peaks and notches.

• Notches at odd harmonics of what frequency?
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Cancellation at Notch Frequencies

• Consider a sinusoid at f = 1/(2τ ) (period of 2τ):
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• Summing with original yields complete cancellation:
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Listen to Cancellation in Pd

• comb11.21.19.pd
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Cancellation at Odd Harmonics

• Adding to a sinusoid at f = 1/(2τ ) a version of itself
delayed by τ yields cancellation at f = 1/(2τ ),
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• and at all odd harmonics of f = 1/(2τ ).

Music 171: Introduction to Delay and Digital Filters 22



Relating τ to delay of M samples

• For y(n) = x(n) + x(n−M) delay is M samples or

τ =
M

fs
seconds.

• There is complete attenuation (notch) at frequency

f =
1

2τ
=

1

2M/fs
=

fs
2M

and at odd harmonics 3f, 5f, ... (up to Nyquist limit).

• For M = 1 (lowpass) there is 1 notch at fs/2.

0     f
s
/8 f

s
/4 3f

s
/8 f

s
/2 

frequency (kHz)

0

2

0

2

Frequency Response Magnitude

x(n)+x(n-1)

x(n)+x(n-6)

• For M = 6 there are notches at fs/12, fs/4, 5fs/12.
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Feedforward Comb Filter

• Regular (comb-like) spacing of peaks/notches
suggests harmonics of a fundamental frequency f0.
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Feedforward Comb Filter in Pd

• see ffcomb2.pd.
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Feedforward Comb Coefficient

• Introducing a coefficient allows for control of
cancellation amount and the depth of notches:
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The Feedback Comb Filter

• What happens when the output of a delay line is
multiplied by gain g < 1 then fed back to the input?

y(n)x(n)

g

M sample delay

• The difference equation for this filter is

y(n) = x(n) + gy(n−M),

• If the input to the filter is an impulse

x(n) = {1, 0, 0, . . .}

the output (impulse response) will be ...
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Feeback Comb Filter Frequency

• Pulses are equally spaced in time at interval
τ = M/fs seconds.

• It is periodic and will sound at frequency f0 = 1/τ .

• Spacing between the maxima of the comb “teeth” is
equal to the natural frequency f0.
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Feedback Comb Filter in Pd
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Effect of the Feedback coefficient

• Minima depth and maxima height controlled by g.

• Values closer to 1 yield more extreme max/min.
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Comb Filter Decay Rate

• The response decays exponentially as determined by
the loop time and gain factor g.

• Values of g nearest 1 yield the longest decay times.

• To obtain a desired decay time, g may be
approximated by

g = 0.001τ/T60

where

τ = the loop time

T60 = the time to decay by 60dB

and 0.001 is the level of the signal at 60dB down.
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Figure 3: Comb filter impulse responses with a changing the decay rate.
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A very simple string model

• A very simple string model can be implemented using
a single delay line and our simple first-order low pass
filter to model frequency-dependent loss.

H(z)

z−N
y(n−N)y(n)

Figure 4: A very simple model of a rigidly terminated string.

• All losses have been lumped to a single observation
point in the delay line, and approximated with our
first-order simple low-pass filter

y(n) = x(n) + x(n− 1)

• Different sounds can be created by changing this
filter.

• The Karplus-Strong Algorithm may be interpreted as
a feedback comb filter (with lowpassed feedback)
or a simplified digital waveguide model.

• How do you pluck the string? (noise burst.)
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