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Inside the Black Box—Pure Delay

Digital Filters

e Filter: any medium through which a signal passes.
e Typically, a filter modifies the signal in some way:

— audio speakers / headphones
— rooms / acoustic spaces
— musical instruments

e A digital filter is a formula for going from one digital
signal (input x(n)) to another (output y(n)):

x(n) y(n)

Figure 1: A black box filter.

e Digital filters typically involve signal delay.
e Delaying an audio signal is to

— move it (earlier/later) in time;

— change the phase of signal (the value at time=0).
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Time shifting a signal

e When a signal can be expressed in the form
y(n) =z(n — M),
y(n) is a delayed (time-shifted) version of z(n).

> Delay: signal shifted to the right by .1 seconds

Advance: signal shifted to the left by .1 seconds
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e y(n) =x(n— M): z(n) is delayed M samples:
— shift is to the right on the time axis.
e y(n) =x(n+ M): x(n) is advanced M samples:

— shift is to the left on the time axis.
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The Delay Line

e The delay line is a functional unit that models
acoustic propagation delay.

e It is a fundamental building block of delay effects
processors.

e The function of a delay line is introduce a time delay
of M samples or

T = M/ fs seconds

between its input and output.

z(n) —— M sample delay ———y(n)

yn)=x(n—M), n=0,1,2,...
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A Running Averager

e Consider a simple case where M = 1.
y(n) =x(n)+x(n —1).
e (Dividing by 2), this filter averages adjacent
samples.

— that is, output y(n) is a running average of input
x(n) with a gain of 2.

‘This filter takes the average of two adjacent samples.‘
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Time shift and addition

e Other than possible silence, there is no audible effect
of a pure delay.

‘x(n) and z(n — M) sound the same‘

noise~

noise burst

ﬁelwrite-— dline 2000 |

Eelread-— dline 1000 |

myoutput

X

e Change arises, however, when a signal x(n) is added
to a delayed version of itself x:(n — M):

y(n) =z(n)+ x(n— M)
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Intuitive Analyis at Low Frequencies

e Consider input at 0 Hz (lowest possible frequency):
xz1(n) =[A,A A, ...
(at 0 Hz there is no change from sample to sample).
e The output is
y(n) = zi(n) +zi(n — 1)
[A, A A, ..
+[0,A,A A, ..]
= [A,24,24,2A,..]
~~ 2x1(n) (except lst sample).

‘The filter has a gain of 2 at the lowest frequency. ‘
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Intuitive Analyis at High Frequencies

e Consider input at % Hz (highest possible frequency):
xo(n) =[A,—A, A, —A, ...
(maximum change from sample to sample).
e The output of the filter is

y(n) = xa(n) + x2(n — 1)

= [A,-A A A, .]
(0,4, —A A, .
= [4,0,0,0,..]

Q

Oza(n) (except lst sample).

‘The filter has a gain of 0 the highest frequency. ‘

o A filter that boosts low frequencies while attenuating
higher frequencies is called a lowpass filter.
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Simple Lowpass Frequency Response

e Frequency response:

— spectrum of the impulse response;

— shows how filter modifies frequency components.

e Frequency response of y(n) = z(n) + z(n — 1):

Frequency Response Magnitude
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What about frequencies in between?
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e Filter behaviour can be determined

— using sinusoids at every possible frequency
between 0 and f;/2 Hz;

— using an input signal that contains all
frequency components and check just once!

e Impulse: signal with the broadest possible spectrum.

x(n)

x(n) + x(n-1)

e Impulse Response (IR): response to an impulse
(e.g. irCave.wav).
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Changing Filter Coefficients

e The difference (instead of the sum) of adjacent
samples:

y(n) = z(n) —z(n - 1).
is like changing the coefficient of x(n — 1) to -1.

e At 0 Hz:
y(n) = x1(n) —x1(n —1)
= [4,AA,..]
—[0,A,A A, ..]
— [4,0,0,0,..]
0z1(n).

%

o At f,/2 Hz:
y(n) = () — zafn — 1)
= [A—-AA-A ]
(0,4, —A, A, ]
—  [A, 24,24, -24,..]
~ 2w9(n).
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Simple Highpass Frequency Response

e Frequency response shows a highpass filter.

Frequency Response Magnitude
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e Notice the same cutoff frequency as simple lowpass.
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Simple Notch Frequency Response

e Frequency response shows a notch filter.

Frequency Response Magnitude
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e Notice cutoff frequency is half of that for lowpass.
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Notch Filter

e Changing the delay of the second term (and adding):
y(n) = x(n) +x(n —2),
has output
—at 0 Hz (z1(n) = [A, A4, A, ....]):

y(n) = [A,A A ]+ [0,0,4,4, ]
= [A, A 24,24, ..] = 2z1(n).

—at fi/2 Hz (x9(n) = [A, —A, A, —A, ..]):

y(n) = [A,—A, A, —A, .. +[0,0,4,—A, A..]

= [A, —A2A, 24, ...] = 2x9(n)
e This filter boosts both low and high frequencies!
e Output at fs/4 Hz (z3(n) = [4,0,—A,0,A,0,...]):

y(n) = w3(n) + x3(n - 2)
[A4,0,—A,0,4,...] +[0,0,4,0,—A,0,..]
= [A,0,0,0,...] = 0x3(n)
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Bandpass Filter

e Changing coefficient of z(n — 2) to -1:
y(n) = x(n) — x(n —2),
yields output
—at 0 Hz:
yn) = [A A A, ...]— [0,0,A4, A, ..]
= [4,4,0,0,..] = 0z(n).
—at f,/2 Hz:
y(n) = [A,—A, A, —A,...]— [0,0,A,—A A..
= [A,—A,0,0,..] = 0z(n).
—at f,/4 Hz:
y(n) = [A,0,—A,04,...] — [0,0,4,0,—A,0,.

]

]

= [A,0,—2A,0,24,0, —24,0,..] = 2z(n).

e Attenuation is at 0 and f;/2 Hz, and boosts f,/4
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Bandpass Filter Frequency Response

e The filter frequency (amplitude) response for

y(n) = z(n) —x(n—2)
shows it is a bandpass filter.

Frequency Response Magnitude

Plots of simple filters

Amplitude Response for y(n) = x(n)+x(n-1)
2

Amplitude Response for y(n) = x(n)-x(n-1)
2

14

-
o

cutoff frequency f
Bandwidth = fS/4

amplitude (linear)
o ©
> » e
T T T
L L L

o
IS
T
I

o
[N
T
I

oo

. .
f/8 fl4 3f/8 fr2
frequency (kHz)

e The bandwidth is determined by the frequency
separation between the two cutoff points.
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Increasing the phase delay

e Make the delay of the 2"¢ term variable:
y(n) = z(n) + z(n — M)

e Effects of increasing the M (the filter order):
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o Notice regularly spaced peaks and notches.

e Notches at odd harmonics of what frequency?
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Figure 2: Amplitude Responses for simple filters

Frequency (normalized)
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Cancellation at Notch Frequencies
e Consider a sinusoid at f = 1/(27) (period of 27):
0 0A65 0.‘1 0.‘15 012 OA‘25 0.3
time (s)
e Delaying that sinusoid by 7 (1/2 a period) yields:
0 0,65 0.‘1 0.‘15 012 O,éS 0.3
time (s)
e Summing with original yields complete cancellation:
3r ‘ ‘ ‘ ‘
0
af ]
0 0.65 O.‘l 0.‘15 D‘.Z O.‘ZS 0.3
time (s)
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Listen to Cancellation in Pd

frequency to cancel

tau

delwrite~ dline 2000

delread~ dline 18606

myoutput

X

e comb11.21.19.pd

Cancellation at Odd Harmonics

e Adding to a sinusoid at f = 1/(27) a version of itself

delayed by 7 yields cancellation at f = 1/(27),
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e and at all odd harmonics of f = 1/(27).

o

o
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Relating 7 to delay of M samples

e For y(n) = z(n) + z(n — M) delay is M samples or

M
T = — seconds.
fs
e There is complete attenuation (notch) at frequency
Fe T f
21 2M/f, 2M

and at odd harmonics 3f,5f, ... (up to Nyquist limit).

e For M =1 (lowpass) there is 1 notch at f/2.

Frequency Response Magnitude
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e For M = 6 there are notches at f,/12, f,/4,5fs/12.
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Feedforward Comb Filter

e Regular (comb-like) spacing of peaks/notches
suggests harmonics of a fundamental frequency f;.

2

100 200 300 400 500 600 700 800 900 1000
frequency (Hz)

e If notches are at odd harmonics of

1
f’l - 57
then peaks are at harmonics of
2 1
f0:2fn,:2_:_~
T T

e For a desired fundamental (sounding) frequency fo:

1 .
T = — seconds OR M = Js samples.
0 fo
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Feedforward Comb Filter in Pd

e see ffcomb2.pd.
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The Feedback Comb Filter

e What happens when the output of a delay line is
multiplied by gain g < 1 then fed back to the input?

)

y(n)

M sample delay

e The difference equation for this filter is
y(n) = x(n) + gy(n — M),
e |f the input to the filter is an impulse
z(n) ={1,0,0,...}

the output (impulse response) will be ...

Amplitude
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Feedforward Comb Coefficient

e Introducing a coefficient allows for control of
cancellation amount and the depth of notches:

Comb Amplitude response for DEPTH 0.2
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Feeback Comb Filter Frequency

e Pulses are equally spaced in time at interval
T = M/ f; seconds.

e It is periodic and will sound at frequency fy = 1/7.

Feedback comp filter with coefficient g = 0.8
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e Spacing between the maxima of the comb “teeth” is
equal to the natural frequency fj.
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Feedback Comb Filter in Pd

delay 2
noise~ short noise burst

)Eelwrite~ myfbcomb 1000

delread~ myfbcomb 2

lowpass filter for string

*~ 0.8| g coefficent lop~ 3500

‘ output is fed back to delayline input
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Comb Filter Decay Rate

e The response decays exponentially as determined by
the loop time and gain factor g.

e Values of g nearest 1 yield the longest decay times.

e To obtain a desired decay time, g may be
approximated by

g = 0.0017/%0

where

the loop time
the time to decay by 60dB

-
760

and 0.001 is the level of the signal at 60dB down.
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Effect of the Feedback coefficient

e Minima depth and maxima height controlled by g.

e Values closer to 1 yield more extreme max/min.

‘Comp fier feedback coefficient g =
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f0 = 220.5 Hz, T60 = .25 (blue), .5 (green), and .75 (red) seconds
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Figure 3: Comb filter impulse responses with a changing the decay rate.
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A very simple string model

e A very simple string model can be implemented using
a single delay line and our simple first-order low pass
filter to model frequency-dependent loss.

y(n) Ny y(n = N)

w

Figure 4: A very simple model of a rigidly terminated string.
e All losses have been lumped to a single observation

point in the delay line, and approximated with our
first-order simple low-pass filter

y(n) = x(n) +z(n — 1)
e Different sounds can be created by changing this
filter.

e The Karplus-Strong Algorithm may be interpreted as
a feedback comb filter (with lowpassed feedback)
or a simplified digital waveguide model.

e How do you pluck the string? (noise burst.)
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