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Digital Filters

• Any medium through which a signal passes may be
regarded as a filter.

• Typically however, a filter is viewed as something
which modifies the signal in some way. Examples
include:

– audio speakers / headphones

– rooms / acoustic spaces

– musical instruments

• A digital filter is a formula for going from one digital
signal to another.
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Figure 1: A black box filter.
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Inside the Black Box—Pure Delay

• Time-domain implementations of digital filters involve
signal delay, that is, delayed versions of input and/or
output signals.

• What does it mean to delay an audio signal?

– move it later (or earlier) in time

– change the initial phase of signal, i.e., the value at
time=0.
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Figure 2: Timeshifting a signal will change the phase of the signal.
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Time shifting a signal

• Whenever a signal can be expressed in the form

y(n) = x(n−M),

y(n) is a delayed (time-shifted) version of x(n).
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• If M is a positive number,

y(n) = x(n−M),

the shift on the time axis is to the right.

• If M is a negative number,

y(n) = x(n +M),

the shift on the time axis is to the left (the signal has
been advanced in time).
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Time shift and addition

• Other than hearing a possible silence (for causal
signals) before the signal onset, there is no audible
effect of a pure delay.

• What happens, however, when a signal x(n) is added
to a delayed version of itself x(n−M)?

• We have created a digital filter, with a formula for
going from input x(n) to output y(n) given by the
difference equation

y(n) = x(n) + x(n−M).
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A Running Averager

• In a simple case where M = 1,

y(n) = x(n) + x(n− 1),

we are taking a running average of the input signal
x(n).

This filter takes the average of two adjacent
samples (with a gain of 2).
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Intuitive Analyis at Low Frequencies

• The running average of a signal with little or no
variation from sample to sample will be very close to
the input signal.

• At DC

x1(n) = [A,A,A, ...].

• The output of the filter is

y(n) = x1(n) + x1(n− 1)

= [A,A,A, ....]

+ [0, A, A,A, ...]

= [A, 2A, 2A, 2A, ...]

The output is effectively the same as the input,
but with a gain of 2.
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Intuitive Analyis at High Frequencies

• The running average of an input signal with
significant variation from sample to sample will be
very different from its input.

• At fs/2 (Nyquist limit)

x2(n) = [A,−A,A, ...].

• The output of the filter is

y(n) = x2(n) + x2(n− 1)

= [A,−A,A, ....]

+ [0, A,−A,A, ...]

= [A, 0, 0, 0, ...]

The output is different from the input—complete
attenuation.
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What about all the frequencies in
between?

• We may find the frequency response of the filter by
checking the behaviour of the filter at every possible
frequency between 0 and fs/2 Hz (sinewave analysis).
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• This filter boosts low frequencies while attenuating
higher frequencies—it is a lowpass filter.
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Impulse Response

• Alternatively, we can use an input signal that contains
all frequency components, and then we only have to
do the “checking” operation once.

• An input signal with the broadest possible spectrum
would be an impulse.

• The response of a filter to an impulse is called an
impulse response.

Any filter in a large class known as linear,
time-invariant (LTI), is completely character-
ized by its impulse response.

• What is the impulse response of this filter?
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Frequency Response

• The spectrum of the impulse response gives us the
frequency response from which we may see how the
filter modifies the amplitude and phase of a signal’s
sinusoidal components.
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Figure 3: Magnitude of the Frequency Response shows a low-pass characteristic.
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Response at the Cutoff Frequency

• Look a little closer at the filter’s response to fs/4.
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Figure 4: Filter behaviour at f
s
/4.
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Interpreting the Phase
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Figure 5: Filter behaviour at f
s
/4.

• This filter is delaying this frequency by half a sample.

• In fact, this filter delays all frequencies by half a
sample.
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Linear Phase Filters

• Filters that delay all frequencies by the same amount
are called linear phase filters.

• Linear phase filters have a symmetric impulse
response.

x(n)

x(n−1)

x(n) + x(n−1)

Figure 6: Filter impulse response.

• For this filter, the impulse response is symmetric
about sample 0.5, which corresponds to a waveform
delay of one-half sample at all frequencies.
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Phase Delay

• The value about which the impulse response is
symmetric is the phase delay of the filter.

A “simple waveform delay” means the waveform
will not change with a change in frequency.

• Linear phase is desirable because it delays all
frequencies by the same number of samples and that
means no phase distortion.
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Changing Filter Coefficients

• Consider the following variation on the two-point
averager (lowpass filter):

y(n) = x(n)− x(n− 1).

How does changing the addition to a subtraction
change the filter?

Changing the addition to a subtraction
changes the coefficients of the filter.

• At DC the output becomes

y(n) = x1(n)− x1(n− 1)

= [A,A,A, ....]

− [0, A, A,A, ...]

= [A, 0, 0, 0, ...]

• At the Nyquist limit the output becomes

y(n) = x2(n)− x2(n− 1)

= [A,−A,A, ....]

− [0, A,−A,A, ...]

= [A,−2A, 2A,−2A, ...]
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Notch and Bandpass Filters

• Consider next, changing the delay value of the second
term:

y(n) = x(n) + x(n− 2).

• This changes the filter order to 2 and effectively sets
the x(n− 1) term to zero.

The filter order is the value of its highest delay.

• This filter passes both DC and the Nyquist limit, but
attenuates fs/4. It is a notch filter.

• The filter given by

y(n) = x(n)− x(n− 2)

rejects DC and the Nyquist limit, and boosts fs/4. It
is a bandpass filter.
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Plots of simple filters
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Figure 7: Amplitude Responses for simple filters

.
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Increasing the Filter Order

• Let’s return now to the simple low-pass filter

y(n) = x(n) + x(n− 1)

• Increasing the order will increase the number of
samples averaged

y(n) = x(n) + x(n− 1) + x(n− 2),

and the waveform will be smoothed (with a more
gentle slope to zero) which corresponds to a lowered
cutoff frequency
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Figure 8: Lowpass filters of increasing order.
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Generalized FIR filter

• Several different (nonrecursive) filters can be made by
changing the delay and the coefficients of the filter
terms,

y(n) = b0x(n) + b1x(n− 1) + ...

b2x(n− 2) + ... + bMx(n−M),

where M is the maximum delay and thus the order of
the filter.

• A filter can be defined simply by a set of coefficients.
For example if

bk = {1, 3, 3, 1},

the filter is third order (has a maximum delay of
M = 3), and can be expanded into the difference
equation

y(n) = x(n) + 3x(n− 1) + 3x(n− 2) + x(n− 3)
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Coefficients as Impulse Response

• The impulse response y(n) = h(n) is equivalent to
coefficients of our FIR filter bk.

• This can be shown using the general FIR equation,
with input x(n) = δ(n) (recall δ only has a nonzero
value when n = 0).

h(0) = b0δ(0) + b1✘✘✘✘✘✘✘✘✿0
δ(0− 1) + b2✘✘✘✘✘✘✘✘✿0

δ(0− 2) + ...

= b0,

h(1) = b0
✚
✚
✚
✚❃
0

δ(1) + b1δ(1− 1) + b2✘✘✘✘✘✘✘✘✿0
δ(1− 2) + ...

= b1,

h(2) = b0δ(2) + b1δ(2− 1) + b2δ(2− 2) + ...

= b2,

...

• When the relation between the input x(n) and the
output y(n) of the FIR filter is expressed in terms of
the input and impulse response, we say the output is
obtained by convolving the sequences x(n) and h(n).
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Increasing the phase delay

• Again returning to the simple low pass filter...

• What happens when the delay is increased?
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• Notice appearance of regularly spaced peaks/notches
(like teeth of a “comb”).
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The Feedforward Comb Filter

• Increasing the delay of the “simple” first-order
lowpass filter

y(n) = x(n) + gx(n−M),

where g is the coefficient multiplying the delay, calls
for use of a delay line:

g
y(n)x(n) z−Mn

Figure 9: A feedforward comb filter.
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Figure 10: The comb filter magnitude response.
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The Delay Line

• The delay line is an elementary functional unit
modeling acoustic propagation delay (e.g. digital
waveguide models and delay effects processors).

x(n) y(n)z−M

Figure 11: The M-sample delay line.

• The delay line introduces a time delay (phase delay of
M samples) between input x(n) and output y(n):

y(n) = x(n−M), n = 0, 1, 2, . . .

• It is linear phase (delay is the same at all frequencies)
as can be seen by the symmetry of the impulse

response about the M th sample.
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Circular Delay Line

• If M changes over time, delay may be implemented
using write (in) and read (out) pointers into a larger
buffer.

• The delay is set by having the read (out) pointer
“chase” the write (in) pointer by the desired delay.

input sequence: 1, 2, 3, 4, 5, etc.

0 0 0 0 0 0 0 01 0

outin

M=3

0 0 0 0 0 0 0 01 M=3

in out

2

0 0 0 0 0 0 01 M=32 3

in out

0 0 0 0 0 01 M=32 3 4

inout

0 0 0 0 01 M=32 3 4 5

inout

output sequence: 0, 0, 0, 1, 2, 3, 4, etc.
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Practical Example

• If the wave propagates L = 1 meter:

– Sampling rate:
fs = 44100

– Temporal sampling period:

T =
1

44100

– Spatial sampling period (distance traveled in one
sample assuming propagation speed of 340 m/s):

X = cT =
340

44100
= 7.7mm

– Number of samples delay:

M =
L

X
=

1

cT
=

1

0.0077
= 130
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The Delay Line Coefficent g

• The feedforward coefficient g controls the proportion
of the delay signal in the output.
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Figure 12: Delayline coefficient controlls notch attenuation and peak gain.

• It can be viewed as the DEPTH parameter, setting

– the amount of gain at the maxima,

– the amount of attenuation at the minima,

that is, the depth from the peaks to the notches.

• Has a range from 0 to 1 (1 corresponds to maximum
depth).
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Cancellation at Notch Frequencies

• Consider a sinusoid at f = 1/(2τ ) (period of 2τ):
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• Delaying that sinusoid by τ (1/2 a period) yields:
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• Summing with original yields complete cancellation:
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Relating τ to delay of M samples

• For y(n) = x(n) + x(n−M) delay is M samples or

τ =
M

fs
seconds.

• There is complete attenuation (notch) at frequency

f =
1

2τ
=

1

2M/fs
=

fs
2M

and at odd harmonics 3f, 5f, ... (up to Nyquist limit).

• For M = 1 (lowpass) there is 1 notch at fs/2.
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• For M = 6 there are notches at fs/12, fs/4, 5fs/12.
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Why Spectral Notches?

• Notches occur in the spectrum as a result of
destructive interference.

• Recall that delaying a sine tone 180 degrees (1/2 a
cycle) and summing with the original will cause the
signal to disappear at the output.
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Figure 13: Complete destructive interference.

• If a sinusoid has a frequency of f0, then a delay of
1/2 cycle corresponds to a delay of

τ =
1

2f0
seconds

or

M =
fs
2f0

samples.
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Delay Parameter M

• A delay of M = fs/(2f0) samples in the comb filter
will yield a notch (complete cancelation) at

f0 =
fs
2M

Hz,

as well as notches at odd harmonics of f0.
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Figure 14: Destructive interference occurs at odd harmonics of the fundamental frequency.

• The well known flanger is a feedforward comb filter
with a time-varying delay M(n) (see flanging.mov).
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