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Flanger

• The well known flanger is a feedforward comb filter
with a time-varying delay M(n) (see flanging.mov).

• Flanging, used in recording studios since the 1960s,
creates a rapidly varying high-frequency sound by
adding a signal to an image of itself that is delayed by
a short, variable amount of time.

• Flanging was accomplished in analog studios by
summing the outputs of two tape machines playing
the same tape.

flange

y(n)

Figure 1: Two tape machines are used to produce the flanging effect.

• By touching (and releasing) the flange on one supply
reel, it would s to slow it down (and speed it up).
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Flange Comb Filter Parameters

• The flange simulation is a feedforward comb filter,
where the delay M(n) is a function of time,

y(n) = x(n) + gx(n−M(n)).

– coefficient g (DEPTH parameter), determines the
prominence of the flanging effect.

– flange is typically swept from a few milliseconds to
0 to produce characteristic “flange” sound.

• The time-varying delay can be handled by modulating
M(n) with a low-frequency oscillator (LFO) sinusoid:

M(n) = M0[1 + A sin(2πfnT )],

where

f , rate or speed of the flanger, in Hz

A , “excursion” (maximum delay swing)

M0 , average delay length controlling the

average notch density.
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Fractional Delay using Linear
Interpolation

• For a successful flanging effect, M(n) must change
smoothly over time:

– M(n) should not have jumps in values associated
with rounding to the nearest integer.

• One of the simplest ways to handle fractional delay is
by using linear Interpolation:

– the linear interpolator effectively “draws a line”
between neighbouring samples, and returns the
appropriate value on that line.
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Figure 2: Linear Interpolation.
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Linear Interpolation (Implementation)

• The fractional part of the delay, δ, effectively
determines how far to go along the line between
samples.

• A fractional delay x̂(n− (M + δ)), reads from the
delay line at neighbouring delays M and M + 1, and
takes the weighted sum of the outputs:

x̂(n−(M+δ)) = (1−δ)x(n−M)+δx(n−(M+1)),

where M is the integer and δ is the fractional part.

• Notice that if δ = 0, the fractional delay reduces to
the regular integer delay.

• Linear interpolation in a circular delay line (Matlab):

if (outPtr==1)

z = (1-delta)*dline(outPtr) + delta*dline(Mmax);

else

z = (1-delta)*dline(outPtr) + delta*dline(outPtr-1);

end

Music 206: Delay and Digital Filters II 5

Tapped Delay Line

• A tap refers to the extraction of the signal at a
certain position within the delay-line.

• The tap may be interpolating or non-interpolating,
and also may be scaled.

• A tap implements a shorter delay line within a larger
delay line.

z−M1x(n)

b1

y(n) = x(n−M2)

b1x(n−M1)

z−(M2−M1)

Figure 3: A delay line tapped after a delay of M1 samples.
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Multi-Tap Delay Line Example

• Multi-Tapped delay lines efficiently simulate multiple
echoes from the same source signal.

z−(M2−M1)z−M1x(n)

b1 b2b0

z−(M3−M2)

b3

y(n)

Figure 4: A multi-tapped delay with length M3.

• In the above figure, the total delay line length is M3

samples, and the internal taps are located at delays of
M1 and M2 samples, respectively.

• The output signal is a linear combination of the input
signal x(n), the delay-line output x(n−M3), and the
two tap signals x(n−M1) and x(n−M2).

• The difference equation is given by

y(n) = b0x(n)+b1x(n−M1)+b2x(n−M2)+b3x(n−M3)

• Convolution is equivalent to tapping a delay line every
sample and multiplying the output of each tap by the
value of the impulse response for that time.
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Chorus

• A Chorus is produced when several musicians play
simultaneously, but inevitably with small changes in
the amplitudes and timings between each individual’s
sound.

• The chorus effect is a signal processing unit that
changes the sound of a single source to a chorus by
implementing the variability occurring when several
sources attempt to play in unison.
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Chorus Implementation

• A chorus effect may be efficiently implemented using
a multi-tap fractional delay line:

– taps are not fixed and usually range from 10 to 50
ms.

– their instantaneous delay may be determined using
a random noise generator or, as in the flanger, a
Low Frequency Oscillator (LFO).

z−M1(n)

zM2(n)

z−M3(n)

z−M4(n)

x(n)

y(n)

g2

g1

g3

g4

Figure 5: A bank for variable delay lines realize the chorus effect.

• The chorus is similar to the flanger, only there are
multiple delayed copies of the input, and the delay
times are typically longer (where a flanger is about
1-10 ms, a chorus is about 10-50 ms).
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A Simple Recursive (IIR) Filter

• Using FIR filters to reproduce a desired frequency
response often requires a very high-order filter, i.e., a
greater number of coefficients and more computation.

• It is often possible to reduce the number of
feedforward coefficients by introducing feedback

coefficients.

• A simple first-order recursive low-pass filter is given by

y(n) = x(n) + .9y(n− 1)
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Figure 6: The spectral magnitude of the first-order FIR and IIR (recursive) lowpass filters.
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The General Difference Equation for
LTI filters

• The general difference equation for LTI filters includes
feedback terms, and is given by

y(n) = b0x(n) + b1x(n− 1) + · · · + bMx(n−M)

− a1y(n− 1)− · · · − aNy(n−N)

• This can be implemented in Matlab using the filter
function:

B = ...; % feedforward coefficients

A = ...; % feedback coefficients

y = filter(B, A, x);

• Matlab specifies coefficients according to the filter
transfer function and NOT the difference equation:

– all feedback coefficients (except the first) have a
sign opposite to that in the difference equation;

– this is explained by moving the y terms in the
difference equation to the left of the equal sign (a
step in arriving at the filter transfer function):

y(n)+a1y(n−1)+ · · · = b0x(n)+b1x(n−1)+ · · ·
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The Simple Feedback Comb Filter

• What happens when we multiply the output of a delay
line by a gain factor g then feed it back to the input?

x(n) y(n)

g

z−M

Figure 7: The signal flow diagram of a comb filter.

• The difference equation for this filter is

y(n) = x(n) + gy(n−M),

• If the input to the filter is an impulse

x(n) = {1, 0, 0, . . .}

the output (impulse response) will be ...
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Figure 8: Impulse response for filter y(n) = x(n) + gy(n−M), where τ = M/f
s
.
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Effect of Feedback Delay

• Since the pulses are equally spaced in time at an
interval equal to the loop time τ = M/fs seconds, it
is periodic and will sound at the frequency f0 = 1/τ .

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.2

0.4

0.6

0.8

1
Simple feedback comp filter where feedback coefficient g = 0.8

A
m

pl
itu

de

Time (s)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
−20

−15

−10

−5

0

M
ag

ni
tu

de
 (

dB
)

Frequency (H)

Figure 9: Impulse and magnitude response of a comb filter with feedback g = 0.8.

• The spacing between the maxima of the “teeth” is
equal to the natural frequency f0.
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Effect of the Feedback coefficient g

• Coefficient g is the depth parameter, where values
closer to 1 yield more extreme maxima and minima.
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Figure 10: Impulse and Magnitude Response with increasing feedback coefficient.
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Feedback Comb Filter Decay Rate

• The response decays exponentially as determined by
the loop time and gain factor g (values near 1 yield
longer decay times).
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Figure 11: Comb filter impulse responses with a changing the decay rate.
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Obtaining a desired T60

• The T60 is the time to decay to an inaudible level of
-60 dB or by 0.001 on a linear scale.

• Given a loop time of M samples (frequency f0) and a
desired T60, what should be the value of g?

• If the loop has a delay of M samples, the number

of trips through the loop after n samples, or
after t seconds is

n

M
=

tfs
M

= tf0,

where f0 is the fundamental frequency of the loop.

• Attenuation at time t is given by

α(t) = gtf0.

• At time t = T60, the attenuation is 0.001,

α(T60) = gT60f0 = gT60fs/M = 0.001,

and solving for g yields

g = 0.001M/(fsT60).
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General Comb Filter

• Combining both the feedforward and feedback comb
filter yields the general comb filter, given by the
difference equation

y(n) = x(n) + g1x(n−M1)− g2y(n−M2)

where g1 and g2 are the feedforward and feedback
coefficients, respectively.

g1

g2

y(n)x(n)

z−M1

z−M2

Figure 12: Signal flow diagram for digital comb filters.
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A very simple string model

• A very simple string model can be implemented using
a single delay line and our simple first-order low pass
filter H(z) to model frequency-dependent loss.

H(z)

z−N
y(n−N)y(n)

Figure 14: A very simple model of a rigidly terminated string.

• Though losses are distributed along the length of the
string, in an LTI system they may be lumped to a
single observation point and approximated with H(z).

• Different quality string sounds can be created by
changing this filter.

• This model may be interpreted as a feedback comb
filter with lowpassed feedback or a simplified digital
waveguide model.

• How is this model excited? How is the string plucked?
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Karplus-Strong Pluck String

• When the delay-line initial conditions consist of white
noise, the algorithm is known as the Karplus-Strong
algorithm.

• White noise is a sequence of uncorrelated random
values. It can be generated in Matlab as follows:

N = ...; % length of vector

y = randn(1, N); % N samples of Gaussian white noise

% with zero mean and unit variance

x = rand(1, N); % N samples of white noise,

% uniform between 0 and 1

xn = 2*(x-0.5); % uniform between -1 and 1

• Filling the delay line with white noise is akin to
plucking the string with a random initial
displacement—a very energetic excitation.

• What are the control parameters of this model?
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Controlling Karplus-Strong

• Controlling Dynamics:

– Limit the range of random numbers—change the
Matlab line
xn = 2*(x-0.5); % uniform between -1 and 1

– Filter the white noise serving as the initial
conditions. The cut-off frequency of the filter will
control the effective dynamic level (since acoustic
instruments are usually brighter at louder dynamic
levels).

• Sounding frequency (pitch)

– Change the delay line length, where

f0 = fs/(N + 1/2).

– The 1/2 term in the denominator is due to the
low-pass filter’s phase delay of 1/2 sample.

– Notice that the delay-line length is of an integer
size. This limits the resolution of possible sounding
frequencies.
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Limits of integer-length delay lines

• At low frequencies (large N), this is less of a problem,
but becomes increasingly problematic at higher
frequencies when delay-line lengths are small and a
single sample delay can make a bigger difference.
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Figure 15: As the desired frequency gets higher, it is quantized to fewer possible values;
there is a single frequency value for all desired frequencies between 7000 and 8000 Hz.

• Example: at fs = 44100,

– to obtain a frequency of 882 Hz, a delay of
fs/882 = 50 samples is required;

– the next highest possible frequency with an integer
number of samples is fs/49 = 900 Hz.

Music 206: Delay and Digital Filters II 21

Frequency-dependent decay rate

• Another (control) problem with KS is that, because of
the low-pass filter in the feedback loop, the decay rate
is dependent on frequency.
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Figure 16: Decay rate is faster at higher frequencies.

• This behaviour is generally desired, as it is a
characteristic of acoustic systems, but it is too
extreme in the KS.
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Selected Smith and Jaffe Extensions

• In a paper by Smith and Jaffe (Computer Music
Journal, Summer 1983) extensions to the
Karplus-Strong are developed in a musical context:

– Tuning (fractional delay) using allpass filters as an
alternative to linear interpolation

– Decay rate shortening and stretching

– Dynamics

– Plucking position

– Rests at the ends of notes (i.e. turning off the
algorithm without hearing a click)

– Glissandi and Slurs

– Sympathetic String Simulation

• Find paper here
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Tuning

• For large N (low pitches) the difference between N
and N + 1 is slight, but becomes increasingly
noticeable for small N (high pitches).

• Recall, the fundamental frequency (which is inversely
proportional to the period) is given by

f1 ,
1

(N + 1/2)Ts
=

fs
N + 1/2

which may be expressed more generally in terms of
phase delay of our feedback filter:

f1 =
fs

N + Pa(f1)
.

• We need to introduce a filter into the feedback loop
that can contribute a small delay without alterning
the loop gain.

• What kind of filters can introduce a
frequency-dependent delay without having an effect
on gain?

Music 206: Delay and Digital Filters II 24



First-Order Allpass Filter

• The first-order allpass filter has difference equation

y(n) = Cx(n) + x(n− 1)− Cy(n− 1),

where |C| < 1 for stability.

• The phase delay, unlike the 2-point averager, is
dependent on frequency.
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Phase delay of First-Order Allpass
Filter

• The low-frequency phase delay may be approximated
by

Pc(f) ≈
1− C

1 + C
.

• The filter coefficient C may be solved as a function of
the desired phase delay Pc(f).

C ≈
1− Pc(f)

1 + Pc(f)
.

• Notice if Pc = 0 then C = 1:

– this produces a pole-zero cancellation on the unit
circle which can cause an unstable filter due to
round-off errors!

– thus, the one-sample delay control is shifted to

ǫ ≤ Pc ≤ (1 + ǫ).
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Setting the Allpass Phase Delay to a
Desired Frequency

• A fundamental frequency f1 has a corresponding
period of

P1 = fs/f1 samples.

• The model should then have a phase delay of

N + Pa(f1) + Pc(f1) = P1 samples.

where Pa(f1) = 1/2 for the two-point averager.

• The delay line length N becomes

N , Floor(P1 − Pa(f1)− ǫ),

where ǫ is a number much less than 1, that was used
to shift Pc(f1)’s one-sampe delay range above 0 to 1.

• The fractional phase delay (in samples) for the allpass
interpolator becomes

Pc(f1) , P1 −N − Pa(f1).
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Attenuation of “Harmonics”

• On each pass through the delay-line loop, a partial at
frequency f is subject to an attenuation equal to the
loop amplitude response |H(ωT )|.

• The frequency response H(ωT ) of the simple lowpass
filter may be found by testing with a complex sinusoid
x(n) = eωnT :

y(n) = x(n) + x(n− 1)

= ejωnT + ejω(n−1)T

= ejωnT + ejωnTe−jωT

= (1 + e−jωT )eωnT

= (1 + e−jωT )x(n),

where H(ejωT ) = (1 + e−jωT ).

• The gain of the filter is given by

G(ω) = |H(ejωT )|

= |(1 + e−jωT )|

= |(ejωT/2 + e−jωT/2)e−jωT/2|

= |2 cos(ωT/2)e−jωT/2|

= 2 cos(ωT/2)
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Loop Attenuation at frequency f1

• The gain of the low-pass filter at frequency f is

Ga(f) = cos(πfTs).

• After M passes through the delay-line loop, a partial
at frequency f is subject to attenuation

cos(πfTs)
M .

• Since the round-trip time in the loop is N + 1/2
samples, the number of trips through the loop after n
samples (n = tfs) is given by

M =
n

N + 1/2
=

tfs
N + 1/2

= tf1.

• The attenuation factor at time t = nTs is given by

αf(t) , cos(πfTs)
tf1.

• That is, a partial or harmonic of frequency f , having
an initial amplitude of A at time 0, will have
amplitude Aαf(t) at time t seconds.
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Solving for corresponding time
constant

• The time constant τ is the time to decay by 1/e.

• To solve for τf , the time constant for frequency f ,

αf(t) = e−t/τf

lnαf(t) = −
t

τf
(take log of both sides)

τf = −
t

lnαf(t)

= −
t

tf1 ln (cos(πfTs))
seconds

= −
1

f1 ln(cos(πfTs))
seconds

= −
(N + 1/2)Ts

ln(cos(πfTs))
seconds.
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Attenuation and Decay with General
Loss Filter

• The filter accounting for frequency-dependent loss
may be other than a two-point averager.

• A general presentation of the attenuation factor for
the kth harmonics is given by

αk(t) = Ga(fk)
tfs

N+Pa(fk) ,

and the decay for each harmonic becomes

τk = −
N + Pa(fk)

fs lnGa(2πfkTs)
,

where Ga(fk) and Pa(fk) are the gain and phase
delays, respectively, of the filter used.
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Relating to the T60

• For audio/music, it is more useful to define the time
constant as the time it takes to decay -60dB, or 0.001
times the initial value.

• The attenuation factor at time t = T60(f) is given by

αf(T60(f)) = 0.001.

• Conversion from τ to T60 is done by

0.001 = e−T60/τ

ln(0.001) = −
T60

τ
T60 = − ln(0.001)τ

≈ 6.91τ

Music 206: Delay and Digital Filters II 32



Decay of non-harmonics

• The previous analysis describes the attenuation due to
“propagation” around the loop.

• Sinusoids that do not “fit” into the loop, are quicky
destroyed by self interference.
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Figure 17: Destructive interference occurs at odd harmonics of the fundamental frequency.

• Though the loop is initialized with random numbers,
after a very short time the primary frequencies
remaining in the loop are those with an integer
number of periods in N + 1/2 samples.
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Decay-time Shortening

• To shorten the decay time, a loss factor of ρ can be
introduced in the feedback loop, yielding

y(n) = x(n) + ρ
y(n−N) + y(n− (N + 1))

2

• The amplitude envelope of a sinusoid at frequency f ,
is now proportional to

αf(t, ρ) = |ρ cos(πfTs)|
tf1 = |ρ|tf1αf(t).

and the decay-time constant for the fundamental
frequency becomes

τ1(ρ) = −
1

f1 ln |ρ cos(πf1Ts)|
.

• Note that ρ cannot be used to lengthen the decay
time, since the amplitude at 0 Hz would increase
exponentially.

• |ρ| ≤ 1 if the string is to be stable.

• ρ is used to shorten the low-pitch notes.
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Setting ρ for a desired T60

• For a desired T60, determine the corresponding time
constant τ

τ ≈
t60
6.91

.

• Use this value in solving for ρ,

τ = −
1

f1 ln |ρ cos(πf1T )|

ln |ρ cos(πf1T )| = −
1

f1τ

|ρ cos(πf1T )| = e
− 1

f1τ

|ρ| =
e−1/(f1τ)

| cos(πf1T )|
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Decay Stretching

• To stretch the decay, and reduce the lowpass effect at
high frequencies, the simple lowpass can be replaced
with a two-point weigthed average

y(n) = (1− S)x(n) + Sx(n− 1),

where S, the stretching factor, is between 0 and 1.

• For stability, S can’t be greater than 1.

• When S = 1/2, the filter reduces the the previous
two-point averager.

• When S = 0 or 1, the frequency-dependent term
(delay) disappears, and the gain response is unity for
all f .

• At intermediate values, 0 < S < 1, the note duration
is finite, with a minimum for S = 1/2.

• The resulting decay time is then a function of loss
factor ρ and stretch factor S.
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Effect of Decay Stretching on Tuning

• Changing S changes the effective loop length as a
function of frequency since it changes the phase delay
of the overall loop.

– we must therefore compute Pa(f1) when using the
allpass filter fractional delay to tune to the desired
frequency.

• As shown in the paper by Smith and Jaffe, for low
frequencies relative to the sampling rate, we may use
the approximation

Pa(f, S) ≈ S, 0 ≤ S ≤ 1.

• See this in Matlab:

S = .6;

[H, omega] = freqz([1-S S], 1);

% start at index 2 to avoid division by 0

mean(angle(H(2:end))./omega(2:end));

• When S = 1/2, we have the basic string algorithm.
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Time constant as a function of S

• Recall the gain of the simple 2-point averager is

G(ω) = |1 + e−jωT |

• The gain of the weighted 2-point averager is

G(S;ω) = |(1− S) + Se−jωT |

= |(1− S) + S[cos(ωT ) + j sin(ωT ))]|

=

√

[(1− S) + S(cos(ωT )]2 + S2 sin2(ωT ))

=
√

(1− S)2 + 2S(1− S) cos(ωT ) + S2.

• The time constant is

τ = −
1

f0 ln(G(S;ω))
= −

N + S

fs ln(G(S;ω))
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