Changing Frequency

Music 171: Frequency Modulation
Tamara Smyth, trsmyth@ucsd.edu
Department of Music,
University of California, San Diego (UCSD)
November 15, 2019

1

Vibrato

- Vibrato: a wavering of pitch.
- occurs in the singing voice and musical instruments (e.g. violin, wind instruments, the theremin, etc.)
- often due to human control after note onset;
- center frequency f_{c} is modulated by a sinusoid with frequency f_{m} yielding osc ${ }^{\sim}$ frequency:

$$
f_{i}=f_{c}+d \sin \left(2 \pi f_{m} t\right)
$$

where d is the frequency deviation from f_{c}.

- example: $f_{c}=220 \mathrm{~Hz}, f_{m}=3 \mathrm{~Hz}$, and $d=3$:

- We have already seen (in Assignment 1) how we can linearly change the frequency of a sinusoid using the line ${ }^{\sim}$ object.

- This signal is generally called a chirp, as it sweeps from one frequency
- Logarithmic chirps, as well as other continuous changes in frequency are also possible.

Vibrato Simulation

- As a sinusoid osc ${ }^{\sim}$ modulated the amplitude of a carrier in AM/RM, so can it modulate the frequency of a carrier to implement FM vibrato:

- The width of the vibrato (the deviation from the carrier frequency) determined by amplitude d.
- The rate of the vibrato, determined by f_{m}.
- To be perceived as vibrato, rate must be below the audible frequency range (LFO) and the width (amplitude) made small.

FM Synthesis of Musical Instruments

FM Sidebands

- When the vibrato rate is increased to a frequency in the audio range, and when the width is made larger, the technique can be used to create a broad range of distinctive timbres.
- Frequency modulation (FM) synthesis was invented by John Chowning at Stanford University's Center for Computer Research in Music and Acoustics (CCRMA).
- FM synthesis uses fewer oscillators than either additive or AM synthesis to introduce more frequency components in the spectrum.

FM Bandwidth

- The deviation d (amplitude of the modulator) acts as a control of FM bandwidth and is usually set as the product of f_{m} and the modulation index I :

$$
d=I f_{m}
$$

so that instantaneous frequency is

$$
f_{i}=f_{c}+I f_{m} \sin \left(2 \pi f_{m} t\right)
$$

- Modulation index I determines harmonic content:
- in general, the highest sideband that has significant amplitude is approximately

$$
k_{\max }=I+1
$$

- If $I(t)$ is time varying, the timbre of a tone can change over time (as do musical sounds!).
- Though calculating the actual amplitude of sidebands is beyond the scope here, it is interesting to known they can be described by Bessel functions.
- The upper and lower sidebands produced by FM are grouped in pairs according to the harmonic number of f_{m}, that is, frequencies present are given by $f_{c} \pm k f_{m}$.

FM Spectrum—Actual vs. Bessel

- The following shows the spectrum and sideband amplitudes calculated using Bessel functions for FM parameters:

$$
f_{c}=150, \quad f_{m}=10, \quad I=5
$$

Effect of Phase in FM

If the FM spectrum spreads downward below 0 Hz , "negative" components are folded over the 0 Hz axis to their corresponding positive frequencies.

Carrier as Even Odd Functions

- Notice how the difference in carrier phase is concentrated in the low-frequency region where overlap from the 0 Hz axis causes constructive/destructive interference.

Changing Carrier Phase

- Furthermore, if the carrier is an odd function, the act of folding reverses the phase.

Amplitudes Calculated by Bessel Functions

- Notice the cancellation at DC.

Fundamental Frequency in FM

- The fundamental (or sounding) frequency of an FM sound, is found by first representing the ratio of the carrier and modulator frequencies in reduced form:

$$
\frac{f_{c}}{f_{m}}=\frac{N_{1}}{N_{2}}
$$

(N_{1} and N_{2} are integers with no common factors).

- The fundamental frequency is then given by

$$
f_{0}=\frac{f_{c}}{N_{1}}=\frac{f_{m}}{N_{2}}
$$

- Example: carrier frequency $f_{c}=10$ and modulator frequency $f_{m}=5$ yields the ratio in reduced form:

$$
\frac{f_{c}}{f_{m}}=\frac{10}{5}=\frac{2}{1}=\frac{N_{1}}{N_{2}}
$$

and a fundamental frequency of

$$
f_{0}=\frac{f_{c}}{N_{1}}=\frac{10}{2}=\frac{f_{m}}{N_{2}}=\frac{5}{1}=5 .
$$

A "Different" Fundamental

- Consider a case where the fundamental is not equal to either carrier or modulator frequency:
- The ratio of $f_{c}=9$ to $f_{m}=6$ is $3: 2$ and the fundamental frequency is given by

$$
f_{0}=\frac{9}{3}=\frac{6}{2}=3 .
$$

- Notic the spectrum has only odd harmonics!

Exponential Envelope

- The exponential (decay) envelope is given by

$$
e^{-t / \tau}
$$

- τ ("tau"): time to decay to $1 / e(\approx 0.368)$.

- If $N_{2}>1$, every $N_{2}^{\text {th }}$ harmonic is missing.
- E.g: ratio of carrier to modulator of 4:3 for $N_{2}=3$:

- Notice the fundamental frequency f_{0} is 1 , but every third multiple of f_{0} is missing from the spectrum.

Note duration (T60)

- Note duration: time to decay $60 \mathrm{~dB}(T 60)$, or to 0.001^{1} (linear scale), the point of inaudibility.
- At $t=T 60$, the amplitude is

$$
e^{-T 60 / \tau}=0.001
$$

- Taking the $\log _{e}$ of both sides yields

$$
-T 60 / \tau=\log _{e}(0.001)
$$

- Given a value for τ, the note duration is

$$
T 60=-\tau \log (0.001)
$$

- Given note duration T60: the characteristic time constant is

$$
\tau=-T 60 / \log (0.001)
$$

Exponential Envelope in Pd

Some FM instrument examples

- When implementing simple FM instruments, we have these main parameters that will effect the overall sound:

1. The carrier and modulator frequency and phase
2. The maximum modulating index
3. The envelopes that define how the amplitude and modulating index evolve over time.

- Using the information taken from John Chowning's article on FM we may develope envelopes for the following simple FM instruments:
- bell-like tones,
- wood-drum
- brass-like tones
- clarinet-like tones

FM Instrument Envelopes

Figure 2: Envelopes for FM bell-like tones, wood-drum tones, brass-like tones and clarinet tones.

