Music 171: Frequency Modulation

Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD)

November 15, 2019

 We have already seen (in Assignment 1) how we can linearly change the frequency of a sinusoid using the line[∼] object.

- This signal is generally called a *chirp*, as it sweeps from one frequency
- Logarithmic chirps, as well as other *continuous* changes in frequency are also possible.

Music 171: Frequency Modulation

Vibrato

1

- Vibrato: a wavering of pitch.
 - occurs in the singing voice and musical instruments (e.g. violin, wind instruments, the theremin, etc.)
 - often due to human control *after* note onset;
 - center frequency f_c is modulated by a sinusoid with frequency f_m yielding ${\tt osc}\-$ frequency:

$$f_i = f_c + d\sin(2\pi f_m t),$$

where d is the frequency deviation from $f_{c}. \label{eq:constraint}$

- example: $f_c = 220$ Hz, $f_m = 3$ Hz, and d = 3:

3

Vibrato Simulation

• As a sinusoid osc~ modulated the *amplitude* of a carrier in AM/RM, so can it modulate the *frequency* of a carrier to implement FM vibrato:

- The *width* of the vibrato (the deviation from the carrier frequency) determined by amplitude *d*.
- The *rate* of the vibrato, determined by f_m .
- To be perceived as vibrato, rate **must be below the audible frequency range** (LFO) and the width (amplitude) made small.

FM Synthesis of Musical Instruments

FM Sidebands

- When the vibrato rate is increased to a frequency in the audio range, and when the width is made larger, the technique can be used to create a broad range of distinctive timbres.
- Frequency modulation (FM) synthesis was invented by John Chowning at Stanford University's *Center for Computer Research in Music and Acoustics* (CCRMA).
- FM synthesis uses fewer oscillators than either additive or AM synthesis to introduce more frequency components in the spectrum.

• The upper and lower sidebands produced by FM are grouped in pairs according to the harmonic number of f_m , that is, frequencies present are given by $f_c \pm k f_m$.

Music 171: Frequency Modulation

Music 171: Frequency Modulation

FM Bandwidth

• The deviation d (amplitude of the modulator) acts as a control of FM bandwidth and is usually set as the product of f_m and the **modulation index** I:

$d = I f_m$

so that instantaneous frequency is

$f_i = f_c + I f_m \sin(2\pi f_m t).$

- Modulation index I determines harmonic content:
 - in general, the highest sideband that has significant amplitude is *approximately*

 $k_{\max} = I + 1.$

- If I(t) is time varying, the timbre of a tone can change over time (as do musical sounds!).
- Though calculating the actual amplitude of sidebands is beyond the scope here, it is interesting to known they can be described by **Bessel functions**.

5

FM Spectrum—Actual vs. Bessel

• The following shows the spectrum and sideband amplitudes calculated using Bessel functions for FM parameters:

$$f_c = 150, \quad f_m = 10, \quad I = 5.$$

• If the FM spectrum spreads downward below 0 Hz, "negative" components are folded over the 0 Hz axis to their corresponding positive frequencies.

• Furthermore, if the carrier is an odd function, the act of folding reverses the phase.

Music 171: Frequency Modulation

Music 171: Frequency Modulation

10

Carrier as Even Odd Functions

• Notice how the difference in carrier phase is concentrated in the low-frequency region where overlap from the 0 Hz axis causes constructive/destructive interference.

Fundamental Frequency in FM

• The fundamental (or sounding) frequency of an FM sound, is found by first representing the ratio of the carrier and modulator frequencies in reduced form:

$$\frac{f_c}{f_m} = \frac{N_1}{N_2}$$

(N_1 and N_2 are integers with no common factors).

• The fundamental frequency is then given by

$$f_0 = \frac{f_c}{N_1} = \frac{f_m}{N_2}.$$

• Example: carrier frequency $f_c = 10$ and modulator frequency $f_m = 5$ yields the ratio in reduced form:

$$\frac{f_c}{f_m} = \frac{10}{5} = \frac{2}{1} = \frac{N_1}{N_2}$$

and a fundamental frequency of

$$f_0 = \frac{f_c}{N_1} = \frac{10}{2} = \frac{f_m}{N_2} = \frac{5}{1} = 5.$$

A "Different" Fundamental

- Consider a case where the fundamental is not equal to either carrier or modulator frequency:
- The ratio of $f_c = 9$ to $f_m = 6$ is 3:2 and the fundamental frequency is given by

$$f_0 = \frac{9}{3} = \frac{6}{2} = 3.$$

• Notic the spectrum has only odd harmonics!

- If $N_2 > 1$, every N_2^{th} harmonic is missing.
- E.g: ratio of carrier to modulator of 4:3 for $N_2 = 3$:

• Notice the fundamental frequency f_0 is 1, but every third multiple of f_0 is missing from the spectrum.

Music 171: Frequency Modulation

13

Exponential Envelope

 \bullet The exponential (decay) envelope is given by

 $e^{-t/\tau}$

• τ ("tau"): time to decay to $1/e~(\approx 0.368)$.

Note duration (T60)

- Note duration: time to decay 60 dB (*T*60), or to 0.001¹ (linear scale), the point of inaudibility.
- At t = T60, the amplitude is

Music 171: Frequency Modulation

 $e^{-T60/\tau} = 0.001.$

 \bullet Taking the \log_e of both sides yields

 $-T60/\tau = \log_e (0.001).$

 \bullet Given a value for $\tau,$ the note duration is

 $T60 = -\tau \log(0.001).$

 \bullet Given note duration T60: the characteristic time constant is

 $[\]tau = -T60/\log(0.001).$

 $^{{}^1\}mathrm{If}\,20\log_{10}(a)=60\;\mathrm{dB}, \,\mathrm{then}\,\log_{10}(a)=60/20, \,\mathrm{and}\;\mathrm{taking\;each\;side\;to\;a\;power\;of\;10\;yields\;}a=10^3=.001.$

- When implementing simple FM instruments, we have these main parameters that will effect the overall sound:
 - 1. The carrier and modulator frequency and phase
 - 2. The maximum modulating index
 - 3. The envelopes that define how the amplitude and modulating index evolve over time.
- Using the information taken from John Chowning's article on FM we may develope envelopes for the following simple FM instruments:
 - bell-like tones,
 - wood-drum
 - brass-like tones
 - clarinet-like tones

Music 171: Frequency Modulation

17

Music 171: Frequency Modulation

FM Instrument Envelopes

Figure 2: Envelopes for FM bell-like tones, wood-drum tones, brass-like tones and clarinet tones

FM Instrument Parameters

	f_c	f_m	I_{MIN}	I_{MAX}
bell	110	220		10
	150	350		5
brass	f_0	f_0		2.66-5
clarinet	$3f_0$	$2f_0$	2	4
woodrum	80	55		25

