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Additive Synthesis Caveat

• Drawback: it often requires many oscillators to
produce good quality sounds, and can be very
computationally demanding.

• Also, many functions are useful only for a limited
range of pitch and loudness. For example,

– the timbre of a piano played at A4 is different from
one played at A2;

– the timbre of a trumpet played loudly is quite
different from one played softly at the same pitch.

• It is possible however, to use some knowledge of
acoustics to determine functions:

– e.g., in specifying amplitude envelopes for each
oscillator, it is useful to know that in many
acoustic instruments the higher harmonics attack
last and decay first.
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Harmonics and Pitch

• Waveforms that contain more than one frequency
component (i.e. aren’t purely sinusoidal) may still be
periodic.

• If frequency components are (more or less) integer
multiples of some fundamental frequency f0,
producing a spectrum with (more or less) evenly
spaced frequency components, they are called
harmonics.

• Signals with harmonic spectra have a periodic
waveform where the period is the inverse of the
fundamental frequency (often the sounding
frequency).

• Pitch is our subjective response to a fundamental
frequency within the audio range.

• The harmonics contribute to the timbre or quality of
a sound, but do not necessarily alter the pitch.

Music 270a: Modulation 3

Beat Notes

• What happens when two sinusoids that are not
harmonically related are added?
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Figure 1: Beat Note made by adding sinusoids at frequencies 218 Hz and 222 Hz.

• The resulting waveform shows a periodic, low
frequency amplitude envelope superimposed on a
higher frequency sinusoid.
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• The beat note comes about by adding two sinusoids
that are very close in frequency.
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Multiplication of Sinusoids

• What happens when we multiply a low frequency
sinusoids with a higher frequency sinusoid (or any two
sinusoids)?

sin(2π(220)t) cos(2π(2)t)

=

(

ej2π(220)t − e−j2π(220)t

2j

)(

ej2π(2)t + e−j2π(2)t

2

)

=
1

4j

[

ej2π(222)t − e−j2π(222)t + ej2π(218)t − e−j2π(218)t
]

=
1

2
[sin(2π(222)t) + sin(2π(218)t)]

• The product of two real sinusoids results in the sum
of two real sinusoids (having different frequencies).

• Interestingly, the resulting spectral components (those
in the sum) are not at the frequencies in the product.
Rather, they are at their sum and the difference.

• Sinusoidal multiplication can therefore be expressed
as an addition.
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Amplitude Modulation

• Modulation is the alteration of the amplitude, phase,
or frequency of an oscillator in accordance with
another signal.

• The oscillator being modulated is the carrier, and the
altering signal is called the modulator.

• Amplitude modulation, therefore, is the alteration of
the amplitude of a carrier by a modulator.

• The spectral components generated by a modulated
signal are called sidebands.

• There are three main techniques of amplitude
modulation:

– Ring modulation

– “Classical” amplitude modulation

– Single-sideband modulation
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Ring Modulation

• Ring modulation (RM), introduced as the beat note
waveform, occurs when modulation is applied directly
to the amplitude input of the carrier modulator:

x(t) = cos(2πf∆t) cos(2πfct).

• Recall that this multiplication can also be expressed
as the sum of sinusoids using the inverse of Euler’s
formula:

x(t) =
1

2
cos(2πf1t) +

1

2
cos(2πf2t),

where f1 = fc − f∆ and f2 = fc + f∆.
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Figure 2: Spectrum of ring modulation.
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Ring Modulation cont.

• Notice again that neither the carrier frequency nor the
modulation frequency are present in the spectrum.
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Figure 3: Spectrum of ring modulation.

• Because of its spectrum, RM is also sometimes called
double-sideband (DSB) modulation.

• Ring modulating can be realized without oscillators
just by multiplying two signals together.

• The multiplication of two complex sounds produces a
spectrum containing frequencies that are the sum and
difference between each of the frequencies present in
each of the sounds.

• The number of components in RM is two times the
number of frequency components in one signal
multiplied by the number of frequency components in
the other.
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“Classic” Amplitude Modulation

• “Classic” amplitude modulation (AM) is the more
general of the two techniques.

• In AM, the modulating signal includes a constant, a
DC component, in the modulating term,

x(t) = [A0 + cos(2πf∆t)] cos(2πfct).

• Multiplying out the above equation yields

x(t) = A0 cos(2πfct) + cos(2πf∆t) cos(2πfct).

• The first term in the result above shows that the
carrier frequency is actually present in the
resulting spectrum.

• The second term can be expanded in the same way as
was done for ring modulation, using the inverse Euler
formula (left as an exercise).
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RM and AM Spectra

• Where the centre frequency fc was absent in RM, it is
present in classic AM. The sidebands are identical.
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Figure 4: Spectrum of amplitude modulation.
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Figure 5: Spectrum of ring modulation.

• A DC offset A0 in the modulating term therefore has
the effect of including the centre frequency fc at an
amplitude equal to the offset.
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RM and AM waveforms

• Because of the DC component, the modulating signal
is often unipolar—the entire signal is above zero and
the instantaneous amplitude is always positive1.
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Figure 6: A unipolar signal.

• The effect of a DC offset in the modulating term is
seen in the difference between AM and RM signals.
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Figure 7: AM (top) and RM (bottom) waveforms.

1The signal without the DC offset that oscillates between the positive and negative is called bipolar
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Single-Sideband modulation

• Single-sideband modulation changes the amplitudes of
two carrier waves that have quadrature phase
relationship.

• Single-sideband modulation is given by

xssb(t) = x(t) · cos(2πfct)−H{x(t)} · sin(2πfct),

where H is the Hilbert transform.
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Frequency Modulation (FM)

• Where AM is the modulation of amplitude, frequency
modulation (FM) is the modulation of the carrier
frequency with a modulating signal.

• Untill now we’ve seen signals that do not change in
frequency over time—how do we modify the signal to
obtain a time-varying frequency?

• One approach might be to concatenate small
sequences, with each having a given frequency for the
duration of the unit.
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Figure 8: A signal made by concatenating sinusoids of different frequencies will result in
discontinuities if care is not taken to match the initial phase.

• Care must be taken in not introducing discontinuities
when lining up the phase of each segment.
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Chirp Signal

• A chirp signal is one that sweeps linearly from a low
to a high frequency.

• To produce a chirping sinusoid, modifying its equation
so the frequency is time-varying will likely produce
better results than concatenating segments.

• Recall that the original equation for a sinusoid is
given by

x(t) = A cos(ω0t + φ)

where the instantaneous phase, given by (ω0t + φ),
changes linearly with time.

• Notice that the time derivative of the phase is the
radian frequency of the sinusoid ω0, which in this case
is a constant.

• More generally, if

x(t) = A cos(θ(t)),

the instantaneous frequency is given by

ω(t) =
d

dt
θ(t).
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Chirp Sinusoid

• Now, let’s make the phase quadratic, and thus
non-linear with respect to time.

θ(t) = 2πµt2 + 2πf0t + φ.

• The instantaneous frequency (the derivative of the
phase θ), becomes

ωi(t) =
d

dt
θ(t) = 4πµt + 2πf0,

which in Hz becomes

fi(t) = 2µt + f0.

• Notice the frequency is no longer constant but
changing linearly in time.

• To create a sinusoid with frequency sweeping linearly
from f1 to f2, consider the equation for a line
y = mx + b to obtain

f(t) =
f2 − f1
2T

t + f1,

where T is the duration of the sweep.
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Sweeping Frequency

• The time-varying expression for the instantaneous
frequency can be used in the original equation for a
sinusoid,

x(t) = A cos(2πf(t)t + φ).
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Figure 9: A chirp signal from 1 to 3 Hz.

• Phase summary:

– If the instantaneous phase θ(t) is constant, the
frequency is zero (DC).

– If θ(t) is linear, the frequency is fixed (constant).

– if θ(t) is quadratic, the frequency changes linearly
with time.
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Vibrato simulation

• Vibrato is a term used to describe a wavering of pitch.

• Vibrato (in varying amounts) occurs very naturally in
the singing voice and in many “sustained”
instruments (where the musician has control after the
note has been played), such as the violin, wind
instruments, the theremin, etc.).

• In Vibrato, the frequency does not change linearly but
rather sinusoidally, creating a sense of a wavering
pitch.

• Since the instantaneous frequency of the sinusoid is
the derivative of the instantaneous phase, and the
derivative of a sinusoid is a sinusoid, a vibrato can be
simulated by applying a sinusoid to the instantaneous
phase of a carrier signal:

x(t) = Ac cos(2πfct + Am cos(2πfmt + φm) + φc),

that is, by FM synthesis.
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FM Vibrato

• FM synthesis can create a vibrato effect, where the
instantaneous frequency of the carrier oscillator varies
over time according to the parameters controlling

– the width of the vibrato (the deviation from the
carrier frequency)

– the rate of the vibrato.

• The width of the vibrato is determined by the
amplitude of the modulating signal, Am.

• The rate of vibrato is determined by the frequency of
the modulating signal, fm.

• In order for the effect to be perceived as vibrato, the
vibrato rate must be below the audible
frequency range and the width made quite small.
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FM Synthesis of Musical Instruments

• When the vibrato rate is in the audio frequency range,
and when the width is made larger, the technique can
be used to create a broad range of distinctive timbres.

• Frequency modulation (FM) synthesis was invented
by John Chowning at Stanford University’s Center for
Computer Research in Music and Acoustics
(CCRMA).

• FM synthesis uses fewer oscillators than either
additive or AM synthesis to introduce more frequency
components in the spectrum.

• Where AM synthesis uses a signal to modulate the
amplitude of a carrier oscillator, FM synthesis uses a
signal to modulate the frequency of a carrier
oscillator.
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Frequency Modulation

• The general equation for an FM sound synthesizer is
given by

x(t) = A(t) [cos(2πfct + I(t) cos(2πfmt + φm) + φc] ,

where

A(t) , the time varying amplitude

fc , the carrier frequency

I(t) , the modulation index

fm , the modulating frequency

φm, φc , arbitrary phase constants.
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Modulation Index

• The function I(t), called the modulation index
envelope, determines significantly the harmonic
content of the sound.

• Given the general FM equation

x(t) = A(t) [cos(2πfct + I(t) cos(2πfmt + φm) + φc] ,

the instantaneous frequency fi(t) (in Hz) is given by

fi(t) =
1

2π

d

dt
θ(t)

=
1

2π

d

dt
[2πfct + I(t) cos(2πfmt + φm) + φc]

=
1

2π
[2πfc − I(t) sin(2πfmt + φm)2πfm +

d

dt
I(t) cos(2πfmt + φm)]

= fc − I(t)fm sin(2πfmt + φm) +
1

2π

d

dt
I(t) cos(2πfmt + φm).
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Modulation Index cont.

• Without going any further in solving this equation, it
is possible to get a sense of the effect of the
modulation index I(t) from

fi(t) = fc − I(t)fm sin(2πfmt + φm) +
dI(t)

dt
cos(2πfmt + φm)/2π.

• We may see that if I(t) is a constant (and it’s
derivative is zero), the third term goes away and the
instantaneous frequency becomes

fi(t) = fc − I(t)fm sin(2πfmt + φm).

• Notice now that in the second term, the quantity
I(t)fm multiplies a sinusoidal variation of frequency
fm, indicating that I(t) determines the maximum
amount by which the instantaneous frequency
deviates from the carrier frequency fc.

• Since the modulating frequency fm is at audio rates,
this translates to addition of harmonic content.

• Since I(t) is a function of time, the harmonic
content, and thus the timbre, of the synthesized
sound may vary with time.
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FM Sidebands

• The upper and lower sidebands produced by FM are
given by fc ± kfm.
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Figure 10: Sidebands produced by FM synthesis.

• The modulation index may be see as

I =
d

fm
,

where d is the amount of frequency deviation from fc.

• When d = 0, the index I is also zero, and no
modulation occurs. Increasing d causes the sidebands
to acquire more power at the expense of the power in
the carrier frequency.
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Bessel Functions of the First Kind

• The amplitude of the kth sideband is given by Jk(I),
a Bessel function2 of the first kind, of order k.

0 5 10 15 20 25
−1

−0.5

0

0.5

1

J 0(I
)

0 5 10 15 20 25
−1

−0.5

0

0.5

1

J 1(I
)

0 5 10 15 20 25
−1

−0.5

0

0.5

1

J 2(I
)

0 5 10 15 20 25
−1

−0.5

0

0.5

1

J 3(I
)

0 5 10 15 20 25
−1

−0.5

0

0.5

1

J 4(I
)

0 5 10 15 20 25
−1

−0.5

0

0.5

1

J 5(I
)

Figure 11: Bessel functions of the first kind, plotted for orders 0 through 5.

• Notice that higher order Bessel functions, and thus
higher order sidebands, do not have significant
amplitude when I is small.

2Bessel functions are solutions to Bessel’s differential equation.
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• Higher values of I therefore produce higher order
sidebands.

• In general, the highest-ordered sideband that has
significant amplitude is given by the approximate
expression k = I + 1.
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Odd-Numbered Lower Sidebands

• The amplitude of the odd-numbered lower sidebands
is the appropriate Bessel function multipled by -1,
since odd-ordered Bessel functions are odd
functions. That is

J−k(I) = −Jk(I).
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Figure 12: Bessel functions of the first kind, plotted for odd orders.
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Effect of Phase in FM

• The phase of a spectral component does not have an
audible effect unless other spectral components of the
same frequency are present, i.e., there is interference.

• In the case of frequency overlap, the amplitudes will
either add or subtract, resulting in a perceived change
in the sound.

• If the FM spectrum contains frequency components
below 0 Hz, they are folded over the 0 Hz axis to
their corresponding positive frequencies (akin to
aliasing or folding over the Nyquist limit).
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FM Spectrum

• The frequencies present in an FM spectrum are
fc ± kfm, where k is an integer greater than zero
(the carrier frequency component is at k = 0).
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Figure 13: Spectrum of a simple FM instrument, where f
c
= 220, f

m
= 110, and I = 2.
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Figure 14: Spectrum of a simple FM instrument, where f
c
= 900, f

m
= 600, and I = 2.
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Fundamental Frequency in FM

• In determining the fundamental frequency of an FM
sound, first represent the ratio of the carrier and
modulator frequencies as a reduced fraction,

fc
fm

=
N1

N2
,

where N1 and N2 are integers with no common
factors.

• The fundamental frequency is then given by

f0 =
fc
N1

=
fm
N2

.

• Example: a carrier frequency fc = 220 and modulator
frequency fm = 110 yields the ratio of

fc
fm

=
220

110
=

2

1
=

N1

N2
.

and a fundamental frequency of

f0 =
220

2
=

110

1
= 110.

• Likewise the ratio of fc = 900 to fm = 600 is 3:2 and
the fundamental frequency is given by

f0 =
900

3
=

600

2
= 300.
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Missing Harmonics in FM Spectrum

• For N2 > 1, every N th
2 harmonic of f0 is missing in

the spectrum.

• This can be seen in the plot below where the ratio of
the carrier to the modulator is 4:3 and N2 = 3.
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Figure 15: Spectrum of a simple FM instrument, where f
c
= 400, f

m
= 300, and I = 2.

• Notice the fundamental frequency f0 is 100 and every
third multiple of f0 is missing from the spectrum.
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Some FM instrument examples

• When implementing simple FM instruments, we have
several basic parameters that will effect the overall
sound:

1. The duration,

2. The carrier and modulating frequencies

3. The maximum (and in some cases minimum)
modulating index scalar

4. The envelopes that define how the amplitude and
modulating index evolve over time.

• Using the information taken from John Chowning’s
article on FM (details of which appear in the text
Computer Music (pp. 125-127)), we may develop
envelopes for the following simple FM instruments:

– bell-like tones,

– wood-drum

– brass-like tones

– clarinet-like tones
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Figure 16: Envelopes for FM bell-like tones, wood-drum tones, brass-like tones and clarinet
tones.
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Formants

• Another characteristic of sound, in addition to its
spectrum, is the presence of formants, or peaks in the
spectral envelope.

• The formants describe certain regions in the spectrum
where there are strong resonances (where the
amplitude of the spectral components is considerably
higher).

• As an example, pronounce aloud the vowels “a”, “e”,
“i”, “o”, “u” while keeping the same pitch for each.
Since the pitch is the same, we know the integer
relationship of the spectral components is the same.

• The formants are what allows us to hear a difference
between the vowel sounds.
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Formants with Two Carrier Oscillators

• In FM synthesis, the peaks in the spectral envelop can
be controlled using an additional carrier oscillator.

• In the case of a single oscillator, the spectrum is
centered around a carrier frequency.

• With an additional oscillator, an additional spectrum
may be generated that is centered around a formant
frequency.

• When the two signals are added, their spectra are
combined.

• If the same oscillator is used to modulate both carriers
(though likely using seperate modulation indeces), and
the formant frequency is an integer multiple of the
fundamental, the spectra of both carriers will combine
in such a way the the components will overlap, and a
peak will be created at the formant frequency.
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Figure 17: The spectrum of individiual and combined FM signals.

Music 270a: Modulation 35

Towards a Chowning FM Trumpet

• In Figure 17, two carriers are modulated by the same
oscillator with a frequency fm.

• The index of modulation for the first and second
carrier is given by I1 and I2/I1 respectively.

• The value I2 is usually less than I1, so that the ratio
I2/I1 is small and the spectrum does not spread too
far beyond the region of the formant.

• The frequency of the second carrier fc2 is chosen to
be a harmonic of the fundamental frequency f0, so
that it is close to the desired formant frequency ff ,

fc2 = nf0 = int(ff/f0 + 0.5)f0.

• This ensures that the second carrier frequency
remains harmonically related to f0.

• If f0 changes, the scond carrier frequency will remain
as close as possible to the desired formant frequency
ff while remaining an integer multiple of the
fundamental frequency f0.
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Two Modulating Oscillators

• Just as the number of carriers can be increased, so
can the number of modulating oscillators.

• To create even more spectral variety, the modulating
waveform may consist of the sum of several sinusoids.

• If the carrier frequency is fc and the modulating
frequencies are fm1 and fm2, then the resulting
spectrum will contain components at the frequency
given by fc ± ifm1 ± kfm2, where i and k are integers
greater than or equal to 0.

• For example, when fc = 100 Hz, fm1 = 100 Hz, and
fm2 = 300 Hz, the spectral component present in the
sound at 400 Hz is the combination of sidebands given
by the pairs: i = 3, k = 0; i = 0, k = 1; i = 3−, k = 2;
and so on (see Figure 18).
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Figure 18: The FM spectrum produced by a modultor with two frequency components.
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Two Modulators cont.

• Modulation indeces are defined for each component:
I1 is the index that charaterizes the spectrum
produced by the first modulating oscillator, and I2 is
that of the second.

• The amplitude of the ith, kth sideband (Ai,k) is given
by the product of the Bessel functions

Ai,k = Ji(I1)Jk(I2).

• Like in the previous case of a single modulator, when
i, k is odd, the Bessel functions assume the opposite
sign. For example, if i = 2 and k = 3− (where the
negative superscript means that k is subtracted), the
amplitude is A2,3 = −J2(I1)J3(I2).

• In a harmonic spectrum, the net amplitude of a
component at any frequency is the combination of
many sidebands, where negative frequencies
“foldover” the 0 Hz bin (Computer Music).
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