On the Transfer Function of the Piecewise (Cylindrical) Model of the Vocal Tract

Tamara Smyth ${ }^{1}$ and Devansh Zurale ${ }^{1}$ trsmyth@ucsd.edu
Department of Music, UC San Diego, La Jolla CA, USA
June 29 - July 1, 2021

Outline

- One-Dimensional Waveguide Acoustic Tube Model
- Transfer Function (1): cylinders and cones, non-polynomial form
- Cylindrical Sections
- Transfer Function (2): ratio of polynomials
- Boundaries with scalar loss
- Relationship to LPC
- Transfer Function (3):
- Boundaries with frequency-dependent loss

Cylindrical and Conical Acoustic Tubes

Waveguide Bleodiem

Acoustic Tube with Varying Cross-Sectional Area

Radii sampled/measured at regular spatial intervals
allows for a piecewise approximation

Piecewise Waveguide Model

Two-Port Scattering Junction (1-D wave propagation)

Pressure

$$
\begin{aligned}
& U_{n}^{i}=\frac{p_{n}^{i}}{Z_{n}(\omega)} \\
& U_{n}^{o}=-\frac{p_{n}^{o}}{Z_{n}^{*}(\omega)}
\end{aligned}
$$

Volume velocity

Characteristic wave impedance:

- cone: a complex function of frequency:
- diverging:
- cylinder: a scalar value:

$$
Z(l, \omega)=\frac{\rho c}{S} \cdot \frac{j \omega}{j \omega+c / l}
$$

converging:

$$
Z^{*}(l, \omega)=\frac{\rho c}{S} \cdot \frac{j \omega}{j \omega-c / l}
$$

$$
Z(l, \omega)=\frac{\rho c}{S} \cdot \frac{j \omega \omega^{1}}{j \omega+c \nmid} \longrightarrow Z=\frac{\rho c}{S}
$$

Two-Port Scattering Junction

Pressure

The law for conservation of mass and momentum:

- pressure at junction equals pressure on each port

$$
p_{1}^{i}+p_{1}^{o}=p_{2}^{i}+p_{2}^{o}
$$

- volume velocity on the each port sums to zeros

$$
\frac{p_{1}^{i}}{Z_{1}}-\frac{p_{1}^{o}}{Z_{1}^{*}}=-\left(\frac{p_{2}^{i}}{Z_{2}}-\frac{p_{2}^{o}}{Z_{2}^{*}}\right)
$$

$$
p_{J}=p_{1}=p_{2}
$$

$$
U_{1}+U_{2}=0
$$

$$
U_{1}^{i}+U_{1}^{o}=-\left(U_{2}^{i}+U_{2}^{o}\right)
$$

Relating Port Inputs and Outputs

System of equations:

$$
\begin{aligned}
p_{1}^{i}+p_{1}^{o} & =p_{2}^{i}+p_{2}^{o} \\
\frac{p_{1}^{i}}{Z_{1}}-\frac{p_{1}^{o}}{Z_{1}^{*}} & =-\left(\frac{p_{2}^{i}}{Z_{2}}-\frac{p_{2}^{o}}{Z_{2}^{*}}\right)
\end{aligned}
$$

Matrix representation:

$$
\mathbf{C}\left[\begin{array}{c}
p_{1}^{i} \\
p_{1}^{o}
\end{array}\right]=\mathbf{D}\left[\begin{array}{c}
p_{2}^{i} \\
p_{2}^{o}
\end{array}\right]
$$

Pressure on either side of the junction:

$$
\left[\begin{array}{l}
p_{1}^{i} \\
p_{1}^{o}
\end{array}\right]=\mathbf{C}^{-1} \mathbf{D}\left[\begin{array}{l}
p_{2}^{i} \\
p_{2}^{o}
\end{array}\right]
$$

$$
\begin{aligned}
\mathbf{C} & =\left[\begin{array}{cc}
1 & 1 \\
\frac{1}{Z_{1}} & -\frac{1}{Z_{1}^{*}}
\end{array}\right] \\
\mathbf{D} & =\left[\begin{array}{cc}
1 & 1 \\
-\frac{1}{Z_{2}} & \frac{1}{Z_{2}^{*}}
\end{array}\right] \\
\mathbf{C}^{-1} & =\frac{1}{\frac{1}{Z_{1}^{*}}+\frac{1}{Z_{1}}}\left[\begin{array}{cc}
\frac{1}{Z_{1}^{*}} & 1 \\
\frac{1}{Z_{1}} & -1
\end{array}\right]
\end{aligned}
$$

Port I/O and Right/Left Traveling Waves

$$
\underbrace{\underbrace{l}_{\left[\begin{array}{l}
p_{1}^{i} \\
p_{1}^{o}
\end{array}\right]}}_{\mathbf{p}_{m}^{\left[\begin{array}{l}
p_{m}^{+} \\
p_{m}^{-}
\end{array}\right]}}=\underbrace{\left[\begin{array}{c}
p_{m+1}^{-} z^{-1} z_{m+1}^{+} \\
p_{m+1}^{+} z
\end{array}\right]}_{\left[\begin{array}{cc}
\mathbf{z}^{-1} \mathbf{D} \\
z & 0
\end{array}\right] \underbrace{\left[\begin{array}{l}
p_{2}^{i} \\
p_{2}^{o}
\end{array}\right]}_{\mathbf{p}_{m+1}}}
$$

Scattering Matrix

$$
\begin{aligned}
& \mathbf{C}^{-1} \mathbf{D}=\frac{1}{\frac{1}{Z_{1}^{*}}+\frac{1}{Z_{1}}}\left[\begin{array}{cc}
\frac{1}{Z_{1}^{*}} & 1 \\
\frac{1}{Z_{1}} & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-\frac{1}{Z_{2}} & \frac{1}{Z_{2}^{*}}
\end{array}\right]=\left[\begin{array}{ll}
\frac{Z_{1}\left(Z_{2}-Z_{1}^{*}\right)}{Z_{2}\left(Z_{1}+Z_{1}^{*}\right)} & \frac{Z_{1}\left(Z_{2}^{*}-Z_{1}^{*}\right)}{Z_{2}^{*}\left(Z_{1}+Z_{1}^{*}\right)} \\
\frac{Z_{1}^{*}\left(Z_{2}-Z_{1}\right)}{Z_{2}\left(Z_{1}+Z_{1}^{*}\right)} & \frac{Z_{1}^{*}\left(Z_{2}^{*}-Z_{1}\right)}{Z_{2}^{*}\left(Z_{1}+Z_{1}^{*}\right)}
\end{array}\right]
\end{aligned}
$$

"Chain" Scattering Matrix

Relationship between traveling waves in adjacent sections:

$$
\mathbf{p}_{m}=\mathbf{A}_{m} \mathbf{p}_{m+1}
$$

$$
\mathbf{A}_{m+1} \underbrace{\mathbf{p}_{m+2}}_{\mathbf{A}_{m+2} \mathbf{p}_{m+3}}
$$

$\mathbf{A}_{m+2} \mathbf{p}_{m+3}$
\ldots and between first and final sections: $\mathbf{p}_{1}=\underbrace{\left(\prod_{m=1}^{M-1} \mathbf{A}_{m}\right)} \mathbf{p}_{M}$
"Chain" Scattering Matrix: $\quad \mathbf{P}_{M-1}=\left[\begin{array}{ll}P_{1,1} & P_{1,2} \\ P_{2,1} & P_{2,2}\end{array}\right]$

Toward the Transfer Function

The transfer function is the (spectral) ratio of the model output to the input:

$$
H_{L}(z)=\frac{Y_{L}(z)}{X(z)}=\frac{p_{M}^{+} T_{L}(z)}{X(z)\}} \text { express as a function of } p_{M}^{+}
$$

The Model Input

Input as a function of traveling waves in the first section:

First section:

$$
\begin{aligned}
& z p_{1}^{+}=\left(R_{0}(z) p_{1}^{-} z^{-1}+X(z)\right) z^{-1} z \\
& p_{1}^{+} z=R_{0}(z) p_{1}^{-} z^{-1}+X(z) \\
& X(z)=p_{1}^{+} \neq-R_{0}(z) p_{1}^{-1}
\end{aligned}
$$

Next, express as a function of traveling waves in the final section

Model Input

Input as a function of traveling waves in the first section:
"chain" scattering matrix

Final section:

Input as a function of right traveling wave in the final section:

$$
X(z)=p_{M}^{+}\left(P_{1,1}+P_{1,2} R_{L}(z)\right) z-R_{0}(z) p_{M}^{+}\left(P_{2,1}+P_{2,2} R_{L}(z)\right) z^{-1}
$$

$$
\begin{aligned}
& \mathbf{p}_{1}=\mathbf{P}_{M-1} \mathbf{p}_{M} \\
& {\left[\begin{array}{l}
p_{1}^{+} \\
p_{1}^{-}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
P_{1,1} & P_{1,2} \\
P_{2,1} & P_{2,2}
\end{array}\right]}\left[\begin{array}{c}
p_{p_{M}^{+}}^{M_{M}^{-}}
\end{array}\right]} \\
& X(z)=\underbrace{+}_{1} z-R_{0}(z) p_{1}^{-} z^{-1} \\
& P_{1,1} p_{M}^{+}+P_{1,2} p_{M}^{-} \quad P_{2,1} p_{M}^{+}+P_{2,2} p_{M}^{-}
\end{aligned}
$$

Transfer Function (1): cone/cylinder, non-polynomial form

The transfer function is the (spectral) ratio of the model output to the input:

$$
\begin{aligned}
H_{L}(z)=\frac{Y_{L}(z)}{X(z)} & =\frac{p_{M}^{+} T_{L}(z)}{X(z)\}} \text { express as a function of } p_{M}^{+} \\
& =\frac{p_{M}^{+} T_{L}(z)}{p_{M}^{+}\left(P_{1,1}+P_{1,2} R_{L}(z)\right) z-R_{0}(z) p_{M}^{+}\left(P_{2,1}+P_{2,2} R_{L}(z)\right) z^{-1}} \times \frac{z^{-1}}{z^{-1}} \\
& =\frac{T_{L}(z) z^{-1}}{P_{1,1}+P_{1,2} R_{L}(z)-R_{0}(z)\left(P_{2,1}+P_{2,2} R_{L}(z)\right) z^{-2}}
\end{aligned}
$$

Junctions for Cylindrical Sections

$$
\underbrace{\left[\begin{array}{l}
p_{m}^{+} \\
p_{m}^{-}
\end{array}\right]}_{\mathbf{p}_{m}}=\underbrace{\left(\mathbf{C}^{-1} \mathbf{D}\right)_{m}\left[\begin{array}{cc}
0 & z^{-1} \\
z & 0
\end{array}\right]}_{\mathbf{A}_{m}} \underbrace{\left[\begin{array}{l}
p_{m+1}^{+} \\
p_{m+1}^{-}
\end{array}\right]}_{\mathbf{p}_{m+1}}
$$

$$
\begin{aligned}
& \begin{array}{|c}
Z_{n}=\frac{\rho c}{S_{n}}
\end{array} \\
\mathbf{C}^{-1} \mathbf{D} & =\left[\begin{array}{ll}
\frac{Z_{1}\left(Z_{2}-Z_{1}^{*}\right)}{Z_{2}\left(Z_{1}+Z_{1}^{*}\right)} & \frac{Z_{1}\left(Z_{2}^{*}+Z_{1}^{*}\right)}{Z_{2}^{*}\left(Z_{1}+Z_{1}^{*}\right)} \\
\frac{Z_{1}^{*}\left(Z_{2}+Z_{1}\right)}{Z_{2}\left(Z_{1}+Z_{1}^{*}\right)} & \frac{Z_{1}^{*}\left(Z_{2}^{*}-Z_{1}\right)}{Z_{2}^{*}\left(Z_{1}+Z_{1}^{*}\right)}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{Z_{2}-Z_{1}}{2 Z_{2}} & \frac{Z_{2}+Z_{1}}{2 Z_{2}} \\
\frac{Z_{2}-Z_{1}}{2 Z_{2}} & \frac{Z_{2}+Z_{1}}{2 Z_{2}}
\end{array}\right] \\
& =\frac{1}{2 S_{1}}\left[\begin{array}{ll}
S_{1}-S_{2} & S_{1}+S_{2} \\
S_{1}+S_{2} & S_{1}-S_{2}
\end{array}\right]
\end{aligned}
$$

$$
\text { for } m^{\text {th }} \text { scattering junction: }\left(\mathbf{C}^{-1} \mathbf{D}\right)_{m}=\frac{1}{2 S_{m}}\left[\begin{array}{ll}
S_{m}-S_{m+1} & S_{m}+S_{m+1} \\
S_{m}+S_{m+1} & S_{m}-S_{m+1}
\end{array}\right]
$$

Reflection Coefficients

$$
\begin{aligned}
\left(\mathbf{C}^{-1} \mathbf{D}\right)_{m} & =\frac{1}{2 S_{m}}\left[\begin{array}{ll}
S_{m}-S_{m+1} & S_{m}+S_{m+1} \\
S_{m}+S_{m+1} & S_{m}-S_{m+1}
\end{array}\right] \\
& =\frac{1}{1+k_{m}}\left[\begin{array}{cc}
k_{m} & 1 \\
1 & k_{m}
\end{array}\right]
\end{aligned}
$$

Scattering Matrix (cylinders):

$$
\mathbf{A}_{m}=\left(\mathbf{C}^{-1} \mathbf{D}\right)_{m}\left[\begin{array}{cc}
0 & z^{-1} \\
z & 0
\end{array}\right]=\frac{1}{1+k_{m}}\left[\begin{array}{cc}
k_{m} & 1 \\
1 & k_{m}
\end{array}\right]\left[\begin{array}{cc}
0 & z^{-1} \\
z & 0
\end{array}\right]=\frac{z}{1+k_{m}}\left[\begin{array}{cc}
1 & k_{m} z^{-2} \\
k_{m} & z^{-2}
\end{array}\right]
$$

Kelly-Lochbaum Scattering Junction

$$
\begin{aligned}
& \text { reflection coefficient } \\
& \qquad k_{m}=\frac{S_{m}-S_{m+1}}{S_{m}+S_{m+1}}
\end{aligned}
$$

"Chain" Scattering Matrix ($N=M-1$ junctions)

$$
\mathbf{A}_{m}=\frac{z}{1+k_{m}}\left[\begin{array}{cc}
1 & k_{m} z^{-2} \\
k_{m} & z^{-2}
\end{array}\right]
$$

$$
\mathbf{P}_{N}=\prod_{m=1}^{N} \mathbf{A}_{m}=\frac{z}{1+k_{1}}\left[\begin{array}{cc}
1 & k_{1} z^{-2} \\
k_{1} & z^{-2}
\end{array}\right] \frac{z}{1+k_{2}}\left[\begin{array}{cc}
1 & k_{2} z^{-2} \\
k_{2} & z^{-2}
\end{array}\right] \cdots \frac{z}{1+k_{N}}\left[\begin{array}{cc}
1 & k_{N} z^{-2} \\
k_{N} & z^{-2}
\end{array}\right]
$$

$$
=\frac{z^{N}}{\prod_{m=1}^{N}\left(1+k_{m}\right)} \underbrace{\left[\begin{array}{ll}
K_{1,1} & K_{1,2} \\
K_{2,1} & K_{2,2}
\end{array}\right]}_{\mathbf{K}_{N}}
$$

Right column:
coefficients in reverse order

Matrix elements are polynomials in \boldsymbol{Z}

$$
\left\{\begin{array}{l}
K_{1,1}=c_{0}+c_{2} z^{-2}+\cdots+c_{2(N-1)} z^{-2(N-1)} \\
K_{2,1}=d_{0}+d_{2} z^{-2}+\cdots+d_{2(N-1)} z^{-2(N-1)} \\
K_{1,2}=d_{2(N-1)} z^{-2}+\cdots+d_{2} z^{-2(N-1)}+d_{0} z^{-2 N} \\
K_{2,2}=c_{2(N-1)} z^{-2}+\cdots+c_{2} z^{-2(N-1)}+c_{0} z^{-2 N}
\end{array}\right.
$$

Matrix elements are polynomials in z

Polynomial Coefficients

Coefficient vectors have the form:

$$
\mathbf{c}_{N}=\left[\begin{array}{c}
c_{0} \\
0 \\
c_{2} \\
0 \\
\vdots \\
c_{2(N-1)} \\
0
\end{array}\right] \mathbf{d}_{N}=\left[\begin{array}{c}
d_{0} \\
0 \\
d_{2} \\
0 \\
\vdots \\
d_{2(N-1)} \\
0
\end{array}\right]
$$

$$
\mathbf{c}_{N}=\left[\begin{array}{c}
\mathbf{c}_{N-1} \\
0 \\
0
\end{array}\right]+k_{N}\left[\begin{array}{c}
0 \\
\tilde{\mathbf{d}}_{N-1} \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Initial coefficients: } \\
& \qquad c_{0}=1 \quad d_{0}=k_{1} \quad \mathbf{d}_{N}=\left[\begin{array}{c}
\mathbf{d}_{N-1} \\
0 \\
0
\end{array}\right]+k_{N}\left[\begin{array}{c}
0 \\
\tilde{\mathbf{c}}_{N-1} \\
0
\end{array}\right]
\end{aligned}
$$

Transfer Function (2): scalar boundaries

Recall first representation:

$$
\begin{aligned}
& H_{L}(z)=\frac{Y_{L}(z)}{X(z)}=\xlongequal[P_{1,1}+P_{1,2} R_{L}(z)-R_{0}(z) z^{-1}]{\left.P_{2,1}+P_{2,2} R_{L}(z)\right) z^{-2}} \\
& \mathbf{P}_{N}=\left[\begin{array}{ll}
P_{1,1} & P_{1,2} \\
P_{2,1} & P_{2,2}
\end{array}\right]_{z^{-N}} \frac{\not \prod_{m=1}^{N}\left(1+k_{m}\right)}{} \underbrace{\left[\begin{array}{ll}
K_{1,1} & K_{1,2} \\
K_{2,1} & K_{2,2}
\end{array}\right]}_{\mathbf{K}_{N}} \\
& H_{L}(z)=\underbrace{K_{1,2} R_{L}-R_{0}\left(K_{2,1}+K_{2,2} R_{L}\right) z^{-2}}_{\underbrace{\frac{\overbrace{z^{-(N+1)}}}{\text { pure delay }} \overbrace{\prod_{m=1}^{N}\left(1+k_{m}\right)}^{\text {scalar }}} \quad \underbrace{}_{a_{0} z^{-0}+a_{1} z^{-1}+\cdots+a_{2(N+1)} z^{-2(N+1)}}})=\frac{B(z)}{A(z)}
\end{aligned}
$$

Transfer Function (2): scalar boundaries

Denominator polynomial:

$$
A(z)=a_{0} z^{-0}+a_{1} z^{-1}+\cdots+a_{2(N+1)} z^{-2(N+1)}
$$

Coefficient (column) vector:

$$
\mathbf{A}_{N}=\mathbf{C}_{N} \mathbf{R}
$$

$$
\mathbf{C}_{N}=\left[\begin{array}{cccc}
\mathbf{c}_{N} & 0 & 0 & 0 \\
0 & \tilde{\mathbf{d}}_{N} & 0 & 0 \\
0 & 0 & \mathbf{d}_{N} & 0 \\
0 & 0 & 0 & \tilde{\mathbf{c}}_{N}
\end{array}\right]=\left[\begin{array}{cccc}
c_{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
0 & 0 & \mathbf{0} & \mathbf{0} \\
c_{2} & d_{2(N-1)} & d_{0} & \mathbf{0} \\
0 & 0 & 0 & 0 \\
c_{4} & d_{2(N-2)} & d_{2} & c_{2(N-1)} \\
0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
c_{2(N-1)} & d_{2} & d_{2(N-2)} & c_{4} \\
0 & 0 & 0 & 0 \\
\mathbf{0} & d_{0} & d_{2(N-1)} & c_{2} \\
\mathbf{0} & \mathbf{0} & 0 & 0 \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & c_{0}
\end{array}\right] \quad \mathbf{R}=\left[\begin{array}{c}
1 \\
R_{L} \\
-R_{0} \\
-R_{0} R_{L}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
-R_{0} \\
R_{0}
\end{array}\right] \quad \mathbf{A}_{N}=\left[\begin{array}{c}
1 \\
0 \\
a_{2} \\
\vdots \\
0 \\
a_{2 N} \\
0 \\
R_{0}
\end{array}\right]
$$

Relationship to LPC

Transfer Function:

$$
H_{L}(z)=\frac{Y_{L}(z)}{X(z)}=\frac{z^{-(N+1)} \prod_{m=1}^{N}\left(1+k_{m}\right)}{\left.1+\sum_{i=1}^{2(N+1)} a_{i}\right)^{-i}}=\frac{B(z)}{A_{\text {defined by coefficients vector } \mathbf{A}_{N}}^{A(z)}}
$$

Difference Equation:

$$
y(n)=\prod_{m=1}^{N}\left(1+k_{m} x(n-(N+1))-\sum_{i=1}^{2(N+1)} a_{i} y(n-i)\right.
$$

Input impulse (unit step function): $\quad x(n)=u(n)=1,0,0,0, \ldots$
Impulse Response:

$$
h(n)= \begin{cases}0, & \text { for } n<N+1 \\ \prod_{m=1}^{N}\left(1+k_{m}\right), & \text { for } n=N+1 \\ -\sum_{i=1}^{2(N+1)} a_{i} h(n-i), & \text { for } n>N+1\end{cases}
$$

Relationship to LPC Coefficient vector \mathbf{A}_{N} is strongly related to the LPC

 coefficients estimated from the impulse response of $H_{L}(z)$.Impulse Response:

$$
h(n)= \begin{cases}0, & \text { for } n<N+1 \\ \prod_{m=1}^{N}\left(1+k_{m}\right), & \text { for } n=N+1 \\ -\sum_{i=1}^{2(N+1)} a_{i} h(n-i), & \text { for } n>N+1\end{cases}
$$

Linear Prediction:

finds coefficients $\hat{\boldsymbol{a}}_{\boldsymbol{i}}$ such that

$$
\underbrace{\hat{x}(n)}=-\overbrace{\sum_{i=1}^{\text {order }}}^{\hat{m}_{i=1}} \hat{a}_{i} x(n-i)
$$ predicted signal

$$
\text { error: } e(n)=0
$$

If order $p=2(N+1)$ and $x(n)=h(n)$

then $\hat{h}(n)=h(n)$ and $\hat{a}_{i}=a_{i}$
$\left.\mathbf{A}_{N}=\mathbf{A}_{p}\right\}$ LPC estimated coefficients vector

Frequency-Dependent Lip Reflection

$R_{L}(z)$ for vowel "aa": modeled (blue) theory (red)

Reflection function at the lips:

$$
\begin{aligned}
& R_{L}(z)=\frac{B_{L}(z)}{A_{L}(z)}=-\frac{\left(b_{L}\right)_{0}+\left(b_{L}\right)_{1} z^{-1}+\left(b_{L}\right)_{2} z^{-2}}{1+\left(a_{L}\right)_{1} z^{-1}+\left(a_{L}\right)_{2} z^{-2}} \\
& \mathbf{B}_{L}=\left[\begin{array}{lll}
\left(b_{L}\right)_{0} & \left(b_{L}\right)_{1} & \left(b_{L}\right)_{2}
\end{array}\right] \quad \text { lip reflection } \\
& \left.\mathbf{A}_{L}=\left[\begin{array}{lll}
\left(a_{L}\right)_{0} & \left(a_{L}\right)_{1} & \left(a_{L}\right)_{2}
\end{array}\right]\right\} \text { coefficient vectors }
\end{aligned}
$$

Transmission function (amplitude complementary): $T_{L}(z)=1+R_{L}(z)=\frac{A_{L}(z)+B_{L}(z)}{A_{L}(z)}$.

Transfer Function (3): frequency-dependent boundaries

Transfer function (2): scalar boundaries:

$$
H_{L}(z)=\frac{z^{-(N+1)} \prod_{m=1}^{N}\left(1+k_{m}\right)}{\left.K_{1,1}+K_{1,} R_{L}\right)-R_{0}\left(K_{2,1}+K_{2,2} R_{L}\right) z^{-2}}
$$

$$
R_{L}(z)=\frac{B_{L}(z)}{A_{L}(z)}
$$

Transfer function (3): frequency-dependent boundaries:

$$
\begin{aligned}
\hat{H}_{L}(z) & =\frac{T_{L}(z) y^{-(N+1)} \prod_{m=1}^{N}\left(1+k_{m}\right)}{K_{1,1}+K_{1},\left(\frac{B_{L}(z)}{A_{L}(z)}\right) R_{0}\left(K_{2,1}+K_{2}, \frac{\left(\frac{B_{L}(z)}{A_{L}(z)}\right) z^{-2}}{2}\right.} \times \frac{A_{L}(z)}{A_{L}(z)} \\
& =\frac{\left(A_{L}(z)+B_{L}(z)\right) z^{-(N+1)} \prod_{m=1}^{N}\left(1+k_{m}\right)}{K_{1,1} A_{L}(z)+K_{1,2} B_{L}(z)-R_{0}\left(K_{2,1} A_{L}(z)+K_{2,2} B_{L}(z)\right) z^{-2}}=\frac{\hat{B}(z)}{\hat{A}(z)}
\end{aligned}
$$

Transfer Function (3): numerator polynomial

Transfer function (3):

$$
\hat{H}_{L}(z)=\frac{\left(A_{L}(z)+B_{L}(z)\right) z^{-(N+1)} \prod_{m=1}^{N}\left(1+k_{m}\right)}{K_{1,1} A_{L}(z)+K_{1,2} B_{L}(z)-R_{0}\left(K_{2,1} A_{L}(z)+K_{2,2} B_{L}(z)\right) z^{-2}}=\frac{\hat{B}(z)}{\hat{A}(z)}
$$

Numerator polynomial:

$$
\begin{aligned}
\hat{B}(z)= & \left(A_{L}(z)+B_{L}(z)\right) z^{-(N+1)} \prod_{m=1}^{N}\left(1+k_{m}\right) \\
= & \left(b_{0}+b_{1} z^{-1}+b_{2} z^{-2}\right) z^{-(N+1)} \prod_{m=1}^{N}\left(1+k_{m}\right) \\
& \underbrace{\left[\begin{array}{lll}
b_{0} & b_{1} & b_{2}
\end{array}\right]}=\mathbf{A}_{L}+\mathbf{B}_{L}
\end{aligned}
$$

$$
R_{L}(z)=\frac{B_{L}(z)}{A_{L}(z)}=-\frac{\left(b_{L}\right)_{0}+\left(b_{L}\right)_{1} z^{-1}+\left(b_{L}\right)_{2} z^{-2}}{1+\left(a_{L}\right)_{1} z^{-1}+\left(a_{L}\right)_{2} z^{-2}}
$$

lip reflection coefficient vectors

$$
\begin{aligned}
\mathbf{B}_{L} & =\left[\begin{array}{lll}
\left(b_{L}\right)_{0} & \left(b_{L}\right)_{1} & \left(b_{L}\right)_{2}
\end{array}\right] \\
\mathbf{A}_{L} & =\left[\begin{array}{lll}
\left(a_{L}\right)_{0} & \left(a_{L}\right)_{1} & \left(a_{L}\right)_{2}
\end{array}\right]
\end{aligned}
$$

Transfer Function (3): denominator polynomial

Transfer function (3):

$$
\hat{H}_{L}(z)=\frac{\left(A_{L}(z)+B_{L}(z)\right) z^{-(N+1)} \prod_{m=1}^{N}\left(1+k_{m}\right)}{K_{1,1} A_{L}(z)+K_{1,2} B_{L}(z)-R_{0}\left(K_{2,1} A_{L}(z)+K_{2,2} B_{L}(z)\right) z^{-2}}=\frac{\hat{B}(z)}{\hat{A}(z)}
$$

Denominator polynomial:

$$
\begin{aligned}
\hat{A}(z) & =K_{1,1} A_{L}(z)+K_{1,2} B_{L}(z)-R_{0}\left(K_{2,1} A_{L}(z)+K_{2,2} B_{L}(z)\right) z^{-2} \\
& =\hat{a}_{0} z^{-0}+\hat{a}_{1} z^{-1}+\cdots+\hat{a}_{2(N+2)} z^{-2(N+2)} \\
\hat{\mathbf{A}}_{N} & \left.=\left[\begin{array}{lllll}
\hat{a}_{0} & \hat{a}_{1} & \hat{a}_{2} & \ldots & \hat{a}_{2(N+2)}
\end{array}\right]\right\} \begin{array}{l}
\text { denominator coefficient vector (with } \\
\text { frequency-dependent lip reflection) }
\end{array}
\end{aligned}
$$

New boundary loss vector: $\quad \hat{\mathbf{R}}_{n}=\left[\begin{array}{llll}\left(\begin{array}{lll}\left.a_{L}\right)_{n} & \left(b_{L}\right)_{n} & -\left(a_{L}\right)_{n} R_{0}\end{array}\right. & -\left(b_{L}\right)_{n} R_{0}\end{array}\right],{ }^{\top}$
holds coefficients for $n^{\text {th }}$-order terms of $R_{L}(z)$
Convolution of coefficients (matrix form):

$$
\hat{\mathbf{A}}_{N}=\left[\begin{array}{ccc}
\mathbf{C}_{N} \\
0 & 0 & 0
\end{array}\right)
$$

$$
\mathbf{C}_{N}=\left[\begin{array}{cccc}
\mathbf{c}_{N} & 0 & 0 & 0 \\
0 & \tilde{\mathbf{d}}_{N} & 0 & 0 \\
0 & 0 & \mathbf{d}_{N} & 0 \\
0 & 0 & 0 & \tilde{\mathbf{c}}_{N}
\end{array}\right]
$$

Conclusions:

- Showed relationship between
- piecewise-cylindrical waveguide model,
- Kelly-Lochbaum scattering junctions reflection coefficients,
- LPC.
- Showed how to incorporate a more accurate (higher-order, acoustically-informed) lip reflection filter into the vocal tract transfer function and feedback coefficients.

Future Work:

- Improved synthesis,
- Fit LPC coefficients to waveguide model,
- Improved inverse filtering,
- Estimation of $R_{L}(z)$ from LPC.

