Music 175: Pitch
 Tamara Smyth, trsmyth@ucsd.edu
 Department of Music,
 University of California, San Diego (UCSD)

May 21, 2019

Pitch

- Pitch is the characteristic of sound that makes it sound high or low, or that determines its position on a musical scale.
- Though pitch is our perceptual response to frequency, and in particular to the fundamental frequency, other contributors include:
- intensity
- spectrum
- duration
- amplitude envelope
- presense of other sounds

Review Pitch and Frequency

- A periodic waveform is one that repeats itself after a time interval T (the period).
- The frequency is the inverse of the period.
- For complex tones having an inverse period of f_{0}, the spectrum consists of harmonics of f_{0}.

Figure 1: Adding sinusoids at $5,10,15 \mathrm{~Hz}$ in both time and frequency domain.

Frequency and Pitch

- Frequency dependence is seen in the patterns of firing of various fibers of the auditory nerve.
- In determining the pitch, the ear apparently performs both a time and frequency analysis of the sound.
- Two majar theories of pitch perception:

1. place (or frequency) theory;
2. periodicity (or time) theory.

Place Theory

- Place theory of hearing: different frequencies excite resonant areas on the basilar membrane (BM).
- The cochlea converts a vibration in time into a vibration pattern in space (along the BM);
maximum vibration along BM depends on frequency
- This, in turn, excites a spatial pattern of neural activity:
- different nerves go to different parts of the BM to pick up the pulses caused by vibrations
- nerves that transmit information from different regions of the BM encode frequency tonotopically (tono $=$ frequency and topos $=$ place);
- neural firing rate is a function of place (highs near the oval window and lows toward the other end);
- Experiments on cochleas removed from human cadavers allowed for observation of wavelike motions of the BM in response to sound.
- Place theory explains MANY—but not ALL—aspects of auditory perception.

Periodicity Theory

- One difficulty, in particular, is in explaining why we hear complex tones as one entity with a single pitch.
- According to Periodicity Theory, the ear performs a time analysis of the sound wave:
- time distribution of elecrical impulses in the auditory nerve holds information about the time distribution of the sound wave;
- yet nerve pulses aren't fast enough to encode exact waveforms.
- Place theory is necessary to account for our reception of the finer details in a waveform.

Figure 2: Peaks and wiggles.

Pitch and Brightness

- How is pitch different from brightness?
- pitch depends on periodicity.
- brightness depends on distribution of total power between high and low frequencies.
- High-frequency partials make a sound bright.
- since musical tones ordinarily have no partials below their pitch frequency ${ }^{1}$, a high pitch tends to be brighter than a low pitch.
- Example: at the same pitch:
- vowel /i/ ("beet") is brighter than /u/ "boot";
- trombone sounds brighter than a French horn:
* Trombone
* French Horn

Figure 3: French horn played facing away from the listener with hand in the bell.

[^0]
Experiments with Clicks

- Periodic waveforms must have sufficient duration (number of cycles) to contribute to the sensation of pitch.
- A sinewave with only 4 cycles sounds like a click (no pitch), bright or dull depending on the frequency.
- try clicks.m: Ncycles $=4$ and $\mathrm{f0}=110,3520$.
- short click, low frequency \longrightarrow dull
- short click, high frequency \longrightarrow bright
- As the number of cycles is increased from 4, we begin to hear more of a pitch and less of a click:
- try clicks.m: $\mathrm{f} 0=440$, Ncycles $=4,10,25$.
- Number of cycles necessary to hear a pitch rather than a click
- increases somewhat with frequency but
- lies in the range of tens of cycles.

Pitch and Partials/Harmonics

- Musical tones have partials that are integer multiples of a fundamental frequency-the pitch frequency.
- The fundamental frequency need not be present.
- (illustrate with pitchpartials.m).
- In experiments by Fletcher, filtering out low frequencies would not
- impede recognition of instruments
- change sensation of pitch.
- This is conistent with our everday experience listening through earbuds in which a full bandwidth is not present.
- Fletcher initially (incorrectly) proposed that the missing fundamental was recreated by nonlinearities in the ear.
- Later concluded that a tone must include 3 successive harmonics in order to hear the pitch frequency.

Terhardt

- Terhardt defined
- virtual pitch: charaterized by the presence of harmonics or near harmonics.
- spectral pitch: corresponding to individual audible pure-tone components.
- Terhardt defines the crossover from virtual to spectral pitch to be at 800 Hz .
- for frequencies well above 1000 Hz the pitch frequency is heard only when the fundamental is actually present.
- Most pitches we hear in normal sounds are virtual, whether fundamental is present or not.

High and Low Pitches

- The mechanism of human pitch perception is different at low and high pitches:
- Fletcher's observations on pitch do not apply at very low frequencies and above 1000 Hz ;
- Terhardt defines the crossover from virtual to spectral pitch to be at 800 Hz .
- At very low frequencies, we may hear successive features of a waveform, so that it is not heard as having just one pitch.
- try pitchpartials.m at low 27.5
- For frequencies above 1000 Hz , the pitch frequency is heard only when the fundamental is present.
- try pitchpartials.m
- Fletcher proposed place theory for high pitches and a time mechanism for low frequencies.
- There is no apparent discontinuity in the sensation as we play notes from lowest to highest pitches-two mechanisms overlap in frequency range.

Experiment with Pitch and Partials

- Using pitchpartials.m:
- add successive equal-amplitude harmonics to $\mathrm{f} 0=$ 55 and $\mathrm{f0}=440$.
- listen for gradual reinforcement of the pitch frequency.
- listen for a sense of a higher frequency (especially $\mathrm{f0}=55$) .

Figure 4: Peaks and wiggles.

- Regular peaks account for hearing f0, and wiggles creates sensation of a higher pitch.
- We can get rid of this sensation by choosing the relative amplitudes differently.
- At around 440 Hz , the ear can get the "right" pitch from the first 6-12 harmonics but NOT from harmonics 7 through 12.
- at 440, the time resolution of the ear isn't good enough to follow the envelope;
- instead, we get a sound based on the frequencies of all the wiggles, small or large.
- Duplex Theory of Pitch says we use two pitch mechanisms:
- based on periodicty at lower frequencies,
- based on frequency (place theory) at higher frequencies.

Experiments with Tone Bursts

Figure 5: Sequences of tone bursts.

- See tonebursts.m
- Up to a rate of 300 tonebursts/s, (bottom) and (middle) have the same pitch and (top) is two octaves lower.
- At a rate above 1600, (middle) and (top) have the same pitch, which is two octaves below (bottom).

Two Mechanisms of Pitch Perception

- Experiments support this notion of two pitch perception mechanisms.
- a sort of counting mechanism (lower frequencies)
- another mechanism that takes over when the ear cannot "count" peaks in the signal's time envelope.
- It is plausible that the high-frequency mechanisms relies on the amplitude of excitation along the basilar membrane.
- Mechanisms appear to be equally effective at about 640 Hz .

Odd Harmonics Only

- In a tone such as the clarinet, even harmonics are much weaker than odd.
- In a synthesized tone with only odd harmonics, we hear the fundamental (repetition) frequency ... except...
- when the fundamental is absent;
- sufficiently low frequencies;
- see oddharmonics.m.
- When the pitch frequency is low, the loudness of the fundamental (and other low harmonics) is much less than that of the higher harmonics (recall equal-loudness curves).
- In the case of odd harmonics only, the frequency separation between successive odd harmonics is twice the pitch frequency.
- the ear makes a pitch judgment based on the distance between the higher harmonics.

[^0]: ${ }^{1}$ There are exceptions to this, as some tones (e.g. overtones) may have subharmonics appearing below the fundamental

