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In this work, a technique is presented for estimating the reed pulse from the pressure signal recorded at
the bell of a clarinet during performance. The reed pulse is a term given to the typically periodic
sequence of bore input pressure pulses, a signal related to the volume flow through a vibrating reed by
the characteristic impedance of the aperture to the bore. The problem is similar to extracting glottal
pulse sequence from recorded speech; however, because the glottis and instrument reeds have very
different masses and opening areas, the source-filter model used in speech processing is not applicable.
Here, the reed instrument is modeled as a pressure-controlled valve coupled to a bi-directional
waveguide, with the output pressure approximated as a linear time invariant transformation of the
product of reed volume flow and the characteristic impedance of the bore. By noting that pressure
waves will make two round trips from the mouthpiece to the bell and back for each reed pulse, yielding
a distinct positive and negative lobe in the running autocorrelation period of the recorded signal, the
round-trip attenuation experienced by pressure waves in the instrument is estimated and used to invert
the implied waveguide, producing reed pulse estimates. VC 2012 Acoustical Society of America.
[http://dx.doi.org/10.1121/1.3699211]
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I. INTRODUCTION

It is common practice for contemporary musicians to
explore a variety of playing techniques, often producing
sounds that may be considered unusual and atypical of their
instrument. Extended playing techniques are being increas-
ingly employed by very accomplished musicians and, as in
the case of reed-based wind instruments, require highly pro-
ficient and virtuosic control of vocal tract and embouchure
to regulate airflow into the instrument.

Performers of acoustic instruments wishing to employ
computer generated sound synthesis and effects to further
augment their instrument’s sonic palette must have some
way to interface themselves with the computer so their musi-
cal intention may be transmitted through gesture, acquired
and rendered as control data, and mapped to the input of a
parametric algorithm. Expression, and the production of
quality sound, is difficult on virtual instruments if the per-
former is not equipped with a device that is sufficiently re-
sponsive, ergonomic, and intuitive.

One approach to electronically augmenting an acoustic
instrument is to obtain a player’s control data by fitting sen-
sors directly on the acoustic instrument. Though this approach
can produce successful artistic results (see, e.g., Ref. 1), it can
also yield a capricious and temperamental instrument, with its
stability being hampered by unwieldy wires and sensors that

also crowd the instrument’s performance space and some-
times fail when coming into contact with the musician.
Unfortunately, many such tools and inventions quickly fall
from use before they can be sufficiently developed and prac-
ticed, and their potential as musical instruments is often only
demonstrated by the inventor.

Another way for a musician to gain access to interactive
sound effects/synthesis algorithms is to replace their instru-
ment entirely with a commercially available controller—an
increasingly popular choice with the availability of wind
controllers offering an alternative to the keyboard interface
and allowing wind players use of the fingering techniques
with which they are more familiar. Yet commercial control-
lers remain committed to, and thus employ, the Musical
Instrument Digital Interface (MIDI) standard, a low-
resolution protocol that is not always sufficient for express-
ing desired nuances [though this problem is gradually being
corrected with the widening use of Open Sound Control
(OSC)].27 Additionally, and perhaps even more significantly,
there is a limit to the sensitivity of these devices, as well as
to which physical parameters can be measured—particularly
at the level of embouchure, making it difficult to capture fine
gestural changes that distinguish a player’s individual articu-
latory style. One final consideration is that a controller
removes the player from the feedback loop connecting con-
trol with the instrument’s produced sound, creating further
challenges for the player. Musicians are generally more vir-
tuosic on acoustic instruments than computer input devices,
likely in part because of the difference in time devoted to
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practice, but also because of the difference in haptic, audi-
tory, and acoustic feedback.2 It is well known, for example,
that buzzing one’s lips at the end of a cylindrical tube is a
rather different experience than at the mouthpiece of a trum-
pet, with the bore and bell serving to shift resonant peaks in
the instrument’s frequency response.

As a third alternative for computer music interaction,
therefore, researchers are increasingly addressing the prob-
lem of deriving a model’s control parameters from record-
ings of an acoustic system’s produced sound, that is, the
inverse problem.3–7 Inverting models by calibrating to
recorded data can validate a physics-based model,8,9

improve playability of its often extremely rich parameter
space,10 or allow for use of estimated parameter values for
control of another processing algorithm.

For wind instruments, one of the primary ways in which
a performer controls sound production, aside from changing
pitch using instrument tone holes/keys, is by changing the
airflow into the bore through alterations of blowing pressure
and embouchure. For example, side tonguing creates a
muffled effect by using the tongue to reduce the amount of
airflow into the mouthpiece; flutter tonguing is a technique
whereby the tongue rapidly opens and closes the airflow into
the mouthpiece; pitch bend is a technique whereby the player
changes the embouchure to sharpen or flatten the pitch; sub-
tones are created by using the least possible amount of air to
sound a note; and vocalizing is a technique whereby the
player speaks or sings into the horn, placing the vibrating
vocal folds in series with the saxophone reed, creating an
amplitude modulation effect that produces a “split” tone.

Postulating that if a playing technique allows for a per-
ceptible difference in the produced sound, the sound signal
must also in turn hold information about the employed play-
ing gesture, the ultimate aim in this research is to estimate
aspects of the clarinetist’s control input using only a micro-
phone that passively records the acoustic pressure signal pro-
duced at the bell of the instrument, and requires no other
inhibiting or intervening hardware.

The research herein, therefore, focuses on an important
initial step toward this goal, and presents a technique for
estimating the signal generated by the reed, from the signal
measured at the bell, using acoustic measurement, post-
processing, and inverse filtering. The estimated pressure sig-
nal is related to volume flow U by the bore’s characteristic
impedance Z0, and is henceforth referred to as the reed pulse
or reed pulse sequence, a term intended as a nod to the simi-
lar problem of estimating the glottal pulse in speech process-
ing, and also to illustrate its expected pulse-train-like nature,
as established in Sec. IV. As the reed pulse holds informa-
tion related to airflow into the bore, embouchure, and high-
level standard and extended playing techniques, it is
expected that its estimation is a prerequisite to further
extracting playing parameters that are more subtle than sim-
ply the pitch (tone hole configuration) of the instrument.
Once the reed pulse is isolated, parameter values may be
gleaned by observing the characteristic behaviors of the sig-
nal (such as contours, closure rates, value-crossings, etc.) or
by calibrating to the output of a physical model of a reed
(such as the one described in Sec. IV), allowing for estima-

tion of physical playing parameters such as blowing pressure
or the reed tension/resonance.

As mentioned earlier, the problem of estimating the reed
pulse is similar to that of estimating a glottal pulse sequence
from recorded speech. This is commonly done via mel-
frequency cepstral coefficients (MFCCs) or linear predictive
coding (LPC).11 However, Lu and Smith presented a method
where the formant filter and the glottal source are separately
estimated via complex optimization.12 As many wind instru-
ment reeds have a much smaller mass and opening than
those of the vocal folds (and this is indeed the case for the
clarinet), they are consequently more effected by the internal
state of the instrument, and generate a more significant
reflection. As a result, the source-filter model used in speech
processing is not expected to be valid here.

An example of recovering the parametric inputs of a
trumpet physical model is described in Ref. 13. Their
method derives an inverse filter using an anechoic measure-
ment of the instrument’s acoustic reflection function, with
the inverse filter being applied to the recorded signal after
adding a physical constraint to address an ill-posed problem.
The assumption that the trumpet bore behaves as a one-
dimensional waveguide with a pure delay that can be
changed with pitch justifies their use of off-line measure-
ments. This assumption, however, cannot be applied to the
clarinet or any instrument having tone holes and for which
the round-trip propagation will vary with a change of finger-
ing. Changing the tone hole configuration will change the
characteristic impedance along the bore, introducing a reflec-
tion and transmission at each open tone hole and thus a more
significant change in the instrument’s transfer function than
simply the length of the propagation delay.

Sterling et al.14 attempt to extract clarinet control pa-
rameters, but state they could not invert their clarinet instru-
ment transfer function. Unable to isolate the reed pulse, they
used the amplitude envelope of the recorded sound to
roughly estimate blowing pressure. In van Walstijn and de
Sanctis15 a procedure is described for providing separate
characterizations of the resonator and the driving signal for
wind instruments. The solution focuses on separating travel-
ing pressure waves, done by taking measurements at differ-
ent positions along the instrument bore to obtain the
reflection function at the open/bell end. Though the method
produces good and important results, they are based on off-
line measurements that require placing microphones inside
their acoustic tube—more difficult when measuring an actual
performing instrument to which you cannot make permanent
modifications.

The work presented here further develops that in Ref. 16,
which presents an expression for the transfer function from
reed pulse to the sound pressure produced by a clarinet at the
bell, as well as an expression for the inverse filter, given in
terms of the instrument bell transmission, reflection, and
propagation losses. The problem exposed in Ref. 16 is that
the reed instrument transfer function is comprised of
unknown waveguide elements (propagation losses, as well
as reflection and transmission at the boundaries and any
open tone holes) that would be needed before completing the
inverse filter. Since most of these elements are expected to

4800 J. Acoust. Soc. Am., Vol. 131, No. 6, June 2012 T. Smyth and J. S. Abel: Toward estimation of clarinet reed pulse

A
ut

ho
r's

 c
om

pl
im

en
ta

ry
 c

op
y



change during performance, solely using off-line measure-
ments would be insufficient for ultimately estimating the
reed pulse from the instrument’s produced sound. The work
here improves upon the method reported in Ref. 16 for esti-
mating round-trip propagation losses from the sound
recorded at the bell, incorporates measurement of the bell’s
transmission function as well as a reed model to obtain a tar-
get for validating the closed-hole case, and presents results
of inverse filtering that very closely match the desired target.

In Sec. II, the classic waveguide model of the clarinet,
presented along with its waveguide filter elements, is used to
follow the behavior of bore pressure in response to an input
pressure pulse, as well as to introduce the periodic structure
of the clarinet signal that forms the basis for estimating the
reed pulse. In Sec. III, the reed-clarinet transfer function is
developed from the input reed pulse X to the instrument’s
produced sound YL, establishing the inverse filter needed for
estimating the reed pulse sequence. Unknown filter elements
that comprise the inverse filter are obtained from measure-
ment in Sec. IV for the special case of the clarinet’s lowest
note, establishing target behavior for subsequent evaluation
for this particular case. Finally, in Sec. V, a more general
technique is presented for estimating the reed pulse in the
presence of any fingering/tone hole configuration. A filter
corresponding to the round-trip instrument losses is esti-
mated from the pressure signal at the bell and compared to
the same filter constructed from measured waveguide ele-
ments. The validation of the closed-hole case, the case for
which there is a target created using measured bell reflec-
tion/transmission functions, provides confidence that the
method may be used for any tone hole configuration (since
the estimation method makes no assumption of tone holes
being closed).

II. CLARINET INSTRUMENT MODEL

Blowing into the mouthpiece of a reed instrument
allows the player to control the reed’s oscillation by creating
a pressure difference across its surface. When the reed oscil-
lates, it creates an alternating opening and closure to the
bore, allowing airflow entry during the open phase and cut-
ting it off during the closed phase. As shown in Sec. IV B,
which describes a simple quasi-static clarinet reed model for
further illustration, the effect is a periodic train of pressure
pulses, the reed pulse sequence, into the bore. The oscilla-
tion of the reed, and thus the periodicity of the reed pulse, is
also dependent on the pressure traveling to and fro along the
length of the bore, a pressure which is subject to frequency-
dependent losses according to the bore’s length, size, shape,
and termination.

It is well known that wave propagation in wind instrument
bores may be approximated using the one-dimensional wave-
guide model structure shown in Fig. 1, with a bi-directional
delay line of lengthM samples accounting for the acoustic prop-
agation delay in the cylindrical and/or conical tube sections of a
given length, and filter elements k(z), RM(z), RB(z), and TB(z),
accounting for the propagation loss, reflection at the mouth-
piece, and open-end reflection and transmission occurring at the
bell, respectively. For this model to be valid for instruments

having tone holes (with open states creating reflection and trans-
mission characteristics that may be lumped with that of the
bell), all elements may contain delays, poles, or “long-memory”
information on the acoustics of the non-cylindrical/non-conical
bell section.17–19

In developing a strategy for extracting the reed pulse x(t)
from the instrument’s produced sound yL(t) (where lowercase
variables are used in the time-domain representation), it is in-
structive to observe how bore pressure behaves in response to
input pressure by following the classic waveguide structure
shown in Fig. 1. For a woodwind such as a clarinet, the initial
position of the reed is open. Introducing mouth pressure cre-
ates a volume flow through the reed channel after which the
reed closes (though not necessarily completely), resulting in a
volume flow pulse. The product of the volume flow U and the
characteristic impedance of the bore Z0 creates a positive
input pressure, or reed pulse x(t) to the bore, which travels to-
ward the bell along the bore length (creating a propagation
delay of M samples) while being subjected to various propa-
gation losses k(z), including viscous drag along the bore walls.
Once the pressure reaches the bell (or an open tone hole), a
part is inverted with transfer function RB(z) and sent propagat-
ing back along the bore to the mouthpiece, and a part is trans-
mitted out the bell with transfer function TB(z). The reflected
pressure is inverted, creating a negative pressure at the mouth-
piece and further closing the reed. The negative pressure is
reflected off the reed with transfer function RM(z) (an assumed
uninverting and predominantly closed reflection) and is
returned down the bore to the bell, again being subjected to
further propagation and reflection loss. The now positive pres-
sure at the mouthpiece y0(t) is sufficient to open the reed and
allow for another reed pulse. The result is that the bore pres-
sure will make two round trips from the mouthpiece to the
bell and back for each reed pulse, with the first being positive,
and the second being negative. In the presence of a periodic
reed pulse sequence, therefore, the bore pressure y0(t) will
also be periodic—with the same period but with two distinct
halves; one where the pressure pulse is positive, and one
where it is negative (illustrated in Fig. 2, and made lossless
for improved visibility). As the periodicity and period struc-
ture of the signal measured at the bell yL(t) is expected to
have a similar structure as the pressure at the mouthpiece
y0(t), the recorded signal yL(t) will also display two distinct

FIG. 1. Waveguide model of a clarinet bore and bell, with commuted propaga-
tion (wall) loss filters k(z) at upper and lower delay line observation points,
open-end reflection and transmission filters RB(z) and TB(z), respectively, having
acoustic properties of the bell, and a reflection filter at the position of the reed/
mouthpiece RM(z). The pressure input into the system (the driving signal or reed
signal) is the product of the volume flow U(z) and the characteristic impedance
Z0. The waveguide is tapped at two positions corresponding to the mouthpiece
and outside the bell, producing pressure outputs Y0(z) and YL(z), respectively.
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halves to the period initiated by the reed pulse, though with a
delay corresponding to the time required to travel the length
of the bore and bell. This periodic structure, with the period
having two distinct halves—one where the pressure pulse is
positive and one where it is negative—provides the basis for
estimating the reed pulse signal x(t) given yL(t).

III. OBTAINING VOLUME FLOW BY INVERSE
FILTERING

Ignoring the time-varying component in the reed/mouth-
piece reflection, the clarinet response YL to input pressure
X¼ Z0U may be seen as a train wave, a succession of waves
spaced at regular intervals, leading to a geometric series that
may be expressed in the z domain as

YLðzÞ ¼ z$MkðzÞTBðzÞ½1þ z$2Mk2ðzÞRMðzÞRBðzÞ
þ z$4Mk4ðzÞR2

MðzÞR
2
BðzÞ þ ' ' '(XðzÞ

¼ z$MkðzÞTBðzÞ
1$ z$2Mk2ðzÞRMðzÞRBðzÞ

XðzÞ

¼ HðzÞXðzÞ; (1)

where M is the acoustic propagation time, in samples,
required to travel the length of the instrument bore, and H(z)
is the clarinet reed pulse transfer function.

The reed pulse sequence X(z) may then be obtained by
inverse filtering, that is,

XðzÞ ¼ YLðzÞ=HðzÞ

¼ 1$ z$2Mk2ðzÞRMðzÞRBðzÞ
z$MkðzÞTBðzÞ

YLðzÞ

¼ GðzÞYLðzÞ; (2)

where the inverse filter is given by

GðzÞ ¼ 1$ z$2Mk2ðzÞRMðzÞRBðzÞ
z$MkðzÞTBðzÞ

: (3)

The inverse filter, therefore, has several unknowns: The bell
reflection and transmission filters RB(z) and TB(z), respec-
tively, the reed/mouthpiece reflection RM(z), and the propaga-

tion losses k(z) along the bore. Obtaining accurate responses
for these waveguide filter elements is not necessarily straight-
forward, as all are expected to change during performance
with an oscillating reed creating a time-varying component in
the mouthpiece, as well as applied fingerings, opening and
closing tone holes, resulting in radiation loss and scattering
along the instrument bore, and thus the need to redefine RB(z)
and TB(z) within the context of the waveguide structure seen
in Fig. 1.

In Sec. IV, the model in Fig. 1, and corresponding
inverse filter G(z) given by Eq. (3), are constructed for the
closed-hole case, since this is the case for which the bore
may be approximated as a cylinder (neglecting chimneys),
which is well described theoretically, and the bell reflection
and transmission functions RB(z) and TB(z) may be accu-
rately estimated using the measurement technique described
in Sec. IV A, adapted from Ref. 20. Having the complete
instrument model for the closed-hole case allows for cou-
pling to a dynamic reed simulation (described in Sec. IV B),
which provides a theoretical reed pulse and an expected
“ideal” signal behavior to which estimations may be com-
pared. The corresponding inverse filter G(z) for the closed-
hole case allows production of a “less ideal,” but closer to
actual, reed pulse signal, estimated from the pressure signal
recorded at the bell of a clarinet playing its lowest note (as
described in Sec. IV C). This provides a target case for vali-
dating the estimation technique described in Sec. V, which is
applicable to any tone hole configuration and makes no
assumption that the tone holes are closed.

IV. TARGET REED PULSE FOR THE CLOSED-HOLE
CASE

To obtain a target behavior of the reed pulse signal, the
unknowns comprising the model in Fig. 1 and the inverse fil-
ter G(z) [Eq. (3)] are completed using both theory and mea-
surement for the case where all tone holes are closed.
Preliminary results are then obtained by directly applying
the inverse filter (3) to the lowest note played on a B-flat
clarinet, played with all the tone holes closed, and recorded
outside the bell. Because this instrument configuration has
no open tone holes causing loss and scattering along the bore
length, it may be reasonably approximated as a cylinder
(omitting chimneys) and modeled using the waveguide struc-
ture in Fig. 1, with wall losses well described theoretically,
reed mouthpiece reflection RM approximated, and bell reflec-
tion and transmission function, RB and TB, respectively,
obtained using the measurement technique described herein.

A. Obtaining bell reflection and transmission
functions

Though the inverse filter (3) and instrument model
described by Fig. 1 are still valid for instrument configurations
having open tone holes, the acoustic behavior resulting from
tone hole radiation and scattering is lumped into RB(z) and
TB(z), and thus these elements, within the context of the wave-
guide model in Fig. 1, would hold more information than
solely the acoustic behavior of the bell. For this reason, the
method described herein for obtaining estimations of bell

FIG. 2. (Color online) Bore pressure at the mouthpiece y0(t) (lower) will
make two round trips from the mouthpiece to the bell and back for each
input reed pulse x(t) (upper). Given a periodic volume flow U(t), and thus a
periodic reed pulse x(t), the bore pressure y0(t) will also be periodic with the
same period, but will have two distinct halves to one reed pulse period—one
where the pressure pulse is positive and one where it is negative. No losses
are considered to better illustrate this fundamental concept.
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reflection and transmission from measurement, R̂BðxÞ and
T̂BðxÞ, respectively, is only applicable to the model of the
clarinet having all tone holes closed. (Note: This method
would, however, likely work well for a trombone, with the
bore being well approximated as a cylinder of varying length,
and the bell also being easily removed and measured.)

The measurement and post-processing technique used to
estimate the bell reflection and transmission filters expands
upon a technique fully described in Ref. 20 for obtaining
waveguide elements from several measurements of a system’s
impulse response. A measurement is taken of a system having
incrementally varying termination/boundary conditions. The
post-signal processing begins by expressing each of the echos
seen in the impulse response in terms of composite waveguide
filter elements. Further manipulation of these expressions
allows for isolation and estimation of filters seen in Fig. 4,
adapted from Fig. 1 but showing elements related to the mea-
surement system that must also be taken into account when
estimating elements comprising the inverse filter in Eq. (3).
The technique described here is also used in Ref. 19 for
obtaining bell reflection and transmission functions to
improve synthesis accuracy in a waveguide synthesis model
of a trombone.

As described in Refs. 19 and 20, measurements are taken
of a 2-m-long PVC pipe, terminated at one end with a speaker
[CUI Inc (Tualatin, OR) CMS020KLX], and at the opposite
end with (1) a piece of flat plastic assumed to be perfectly re-

flective and (2) a clarinet bell. A microphone capsule (omni-
directional electret condenser microphone cartridge, JL-061C)
is embedded in the pipe wall as close to the speaker as possi-
ble, with another of the same model placed within 7 cm of,
and on axis with, the tube/bell. The measurement system is
illustrated in Fig. 3, and may be modeled as per Fig. 4,
adapted from Fig. 1 to include filter elements related to the
measurement system.

For both the closed and bell-terminated systems seen in
Fig. 3, a test signal, a logarithmic swept sinusoid of suffi-
cient length (20 s) to ensure a sufficiently large signal-to-
noise ratio (SNR),21 is used to drive the speaker, with the
response, y0(t) and yL(t), being recorded at the interior and
exterior microphones, respectively. The peak level for y0(t)
measured approximately 90 dB above the noise floor stand-
ard deviation, whereas the SNR for yL(t) was approximately
70 dB, both using a 20-s-long test signal. Note: Though no
signal is expected at the outside microphone for the closed
tube, the recorded response may be used to verify there is lit-
tle or no leakage from the closed end.

As described by Ref. 21, the signals recorded at the two
microphones, y0(t) and yL(t) are linearly deconvolved to sep-
arate non-linear harmonic distortion (caused by the speaker)
from the desired linear impulse response. Following this
post-processing, and assuming both a microphone magnitude
response that is flat in the band of interest and no prior circu-
lating energy in the tube, the first three arrivals for the closed
tube Ln, windowed from the impulse response seen in Fig. 5
(top), are given by

L1ðxÞ ¼ rðxÞ; (4)

L2ðxÞ ¼ rðxÞk2ðxÞð1þ qðxÞÞ; (5)

L3ðxÞ ¼ rðxÞk4ðxÞqðxÞð1þ qðxÞÞ; (6)

where r(x) is the speaker transmission function (the fre-
quency response of the speaker), q(x) is the frequency
response of the function describing the reflection off the
speaker, and k2(x) is the frequency response of the round-
trip propagation losses for a cylinder. The function of x is
used in lieu of z to distinguish measurement from the theo-
retical representation used in Fig. 4.

Changing the rigid termination at the end opposite the
speaker by appending a clarinet bell produces the system in
Fig. 3 (lower), and introduces the bell reflection in the
response arrivals at both microphones. The arrival responses
B0,n for the bell-terminated tube at the microphone positioned
next to the speaker are windowed from the impulse response
seen in Fig. 5 (middle), the first three of which are given by

B0;1 ¼ rðxÞ; (7)

B0;2 ¼ rðxÞk2ðxÞRBðxÞð1þ qðxÞÞ; (8)

B0;3 ¼ rðxÞk4ðxÞqðxÞR2
BðxÞð1þ qðxÞÞ: (9)

The bell reflection may be estimated by taking the ratio of
the second arrival spectra from the bell-terminated and
closed tubes:

FIG. 3. The measurement system, showing a 2m tube terminated at one end
with a speaker, and at the other (1) closed (top), and (2) with a clarinet bell
(bottom). The speaker provides a driving signal, while a co-located micro-
phone, as well as one placed 7 cm outside the bell, records the response.

FIG. 4. Waveguide model of a cylindrical tube adapted from Fig. 1, with
microphone capturing signal response Y0(z) at the tube base, and a co-located
speaker having a transmission function of r(z) and a reflection function of q(z).
At the opposite end there are two possible terminating conditions: (1) R(z)¼ 1
and T(z)¼ 0 for a closed tube, and (2) R(z)¼RB(z) and T(z)¼TB(z) for the
appended clarinet bell.
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R̂BðxÞ ¼
B0;2ðxÞ
L2ðxÞ

¼ rðxÞk2ðxÞRBðxÞð1þ qðxÞÞ
rðxÞk2ðxÞð1þ qðxÞÞ

; (10)

with the resulting frequency response magnitude being plot-
ted in Fig. 6 (upper) and showing an expected low-pass
characteristic.

The arrival responses BL,n for the bell-terminated tube at
the microphone positioned 7 cm outside, and on axis with,
the bell, are windowed from the impulse response seen in
Fig. 5 (bottom), the first two of which are given by

BL;1 ¼ rðxÞkðxÞTBðxÞ; (11)

BL;2 ¼ rðxÞk3ðxÞRBðxÞqðxÞTBðxÞ: (12)

The bell transmission may be estimated from the first arrival
BL,1 by dividing Eq. (11) by the product of the speaker trans-
mission (4) and the cylindrical propagation losses k(x),
yielding

T̂BðxÞ ¼
BL;1ðxÞ

L1ðxÞkðxÞ
¼ rðxÞkðxÞTBðxÞ

rðxÞkðxÞ
; (13)

where the propagation losses k(x) may be obtained either
theoretically or using an additional measurement of an open
cylinder as described in Ref. 20. The resulting bell transmis-

sion frequency response magnitude is plotted in Fig. 6
(lower), showing an expected high-pass characteristic.

B. A model of the reed pulse

Before estimating the reed pulse X from the clarinet sig-
nal YL, it is useful to gain an understanding of what type of
signal is expected, and how it might change under different
playing conditions. As previously stated, it is expected that
the reed pulse signal behaves like a pulse train, with pulses
typically followed by periods of reed closure if the player
blows sufficiently hard that the reed beats against the lay of
the mouthpiece. This assumption is illustrated by a simple
quasi-static model of volume flow U through the reed chan-
nel. Though this model is chosen here for illustration clarity,
a dynamic model may be preferable for sound synthesis.22

In the presence of an applied mouth (blowing) pressure, a
pressure difference Dp is created across the reed between the
valve’s upstream (mouth) and downstream (bore) pressures,
setting the reed into motion with a displacement that may be
approximated by

xdðtÞ ¼
DpðtÞ
j

; (14)

where j describes the reed stiffness (in Pa/m). Note that
Eq. (14) may be derived from the familiar second-order dif-
ferential equation for a simple harmonic oscillator by setting
the derivatives to zero, rendering the reed effectively mass-
less, and leaving j as the only reactive element.23 As the
reed vibrates, the displacement toward, and away, from
the lay of the mouthpiece creates a variable opening to the
bore through which volume flow may pass at a steady-state
rate approximated by the stationary Bernoulli equation,

UðtÞ ¼ AðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DpðtÞ

q

s

; (15)

FIG. 5. (Color online) Measured impulse responses for the closed cylinder
(top), bell-terminated cylinder (middle), and bell-terminated cylinder out-
side the bell (bottom), showing individual arrivals as their inverse
transforms.

FIG. 6. (Color online) Bell reflection and transmission filter magnitudes. As
expected, the former shows a low-pass characteristic, while the latter shows
a high-pass characteristic.
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where q is air density, and A(t) is the cross sectional area,
given by the product of the jet’s (valve channel’s) width w
and height,

AðtÞ ¼ wðH0 $ xdðtÞÞ; (16)

where H0 is the equilibrium opening, the opening of the
valve channel in the absence of flow. As seen in Fig. 7, when
plotted as a function of pressure difference, the volume flow
produces a pulse-like shape during the reed’s open state,
reaching a maximum volume flow of

Umax ¼ wH0
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dpmax

3q

s

; (17)

at Dpmax/3, followed by zero volume flow at the maximum
pressure difference,

Dpmax ¼ jH0; (18)

above which the reed is closed.
When this reed model, known as the quasi-static reed

model,22–25 is coupled to the waveguide model of the
instrument bore, the synthesized clarinet output, obtained
using the closed-hole case of either, either Eq. (1) or the
time-domain waveguide model illustrated in Fig. 1, com-
pleted with bell filter elements estimated as in Sec. IV A,
results in the produced sound and corresponding reed pulse
sequence seen in Fig. 8. Figure 8 shows the model at vari-
ous stages of the note, the attack, the steady state, and the
note release, with the reed pulse characteristic being most
prominent during the non-transient sustained component of
the note.

FIG. 7. (Color online) The volume flow U as a function of change in pressure
across the reed Dp produces a pulse-like shape followed by a horizontal line
above the maximum pressure difference Dpmax. The maximum flow Umax is
reached at Dpmaxmax/3, and corresponds to the threshold of oscillation while
Dpmax corresponds to zero flow and a closed reed. Notice how the shape of
the volume flow pulse, defined by the maximum volume flow Umax and the
maximum pressure difference Dpmax, changes with a change in reed stiffness,
a parameter that typically corresponds to the player’s embouchure, suggesting
the flow signal may be useful in extracting playing parameters related to tim-
bral control.

FIG. 8. (Color online) Outputs of the clarinet reed coupled to a waveguide
model shown at various stages of a note: At the note onset (attack), the note
sustain (steady state) and the note release (decay). Both volume flow and
sound transmitted at the bell are shown, so that the relationship between the
flow pulse and the clarinet signal may be observed.

J. Acoust. Soc. Am., Vol. 131, No. 6, June 2012 T. Smyth and J. S. Abel: Toward estimation of clarinet reed pulse 4805

A
ut

ho
r's

 c
om

pl
im

en
ta

ry
 c

op
y



C. Preliminary estimation results

Preliminary results of estimating the reed pulse from an
actual recording, shown in Fig. 9, are obtained by applying
the inverse filter (3) to the special case of the lowest note
played on a clarinet having the same bell, and using the
same recording microphone, in the same position, as in the
measurement setup of Sec. IV A. With all the tone holes on
the clarinet closed, it is assumed there is no radiation loss or
scattering along the clarinet bore (ignoring the tone hole
chimneys), justifying the use of a theoretically modeled cy-
lindrical wall loss filter for bore propagation loss k(z), shown
to be accurate when designed according to a cylinder’s
length and radius.26 This instrument configuration is
expected to most closely match the model given by Eq. (1)
when completed with the measured bell reflection (10) and
transmission (13) function obtained as per Sec. IV A, and
thus likely yielding the most accurate estimation of the reed
pulse sequence possible with known waveguide elements.

It should be noted, however, that the approximations
made in constructing the instrument model and its inverse
(3), in particular setting RM(z)¼ 0.9, omitting the effects of
the mouthpiece, and, likely less significantly, omitting the
effects of the tone hole chimneys, will only allow for estima-
tion of an approximate target reed pulse, its accuracy being
dependent on the accuracy of the approximation(s). The
more general method presented in Sec. V (not limited to the
closed-hole case) that estimates the lumped round-trip losses
of the instrument (i.e., it does not rely on having values for
individual waveguide elements) makes no approximations of
waveguide elements, and may thus yield a more accurate
estimation of the reed pulse than the preliminary target pre-
sented here—even for the closed-hole case. That is, it is not
expected that the estimated reed pulse signals will be exact
for each technique, but that they will be very similar and ex-
hibit the behavior expected of a reed pulse sequence (as
described in Sec. IV B).

V. ESTIMATING THE REED PULSE FOR THE
GENERAL CASE

The preliminary results obtained in Sec. IV C for a re-
cording of the clarinet’s lowest note display behavior that is
expected of a reed pulse signal: The signal is periodic with
the same period as the recorded signal, with each reed pulse
in the sequence being followed by a segment of partial or
complete reed closure. The corresponding period of the
recorded pressure signal displays the expected two distinct
halves, one where the pressure pulse is positive, followed by
one where it is negative, with the overall period having a
phase relationship to the volume flow pulses that closely
matches that seen in the model’s steady-state output, shown
in Fig. 8 (middle).

As previously mentioned, the waveguide elements com-
prising the inverse filter in Eq. (3) are expected to change
during performance. Opening and closing tone holes will in-
validate estimated bell reflection and transmission filters,
R̂BðxÞ and T̂BðxÞ, obtained using the measurement and post-
processing technique described in Sec. IV A, within the
assumed waveguide structure seen in Fig. 1. In addition, it is
possible that propagation losses are no longer as accurately
described theoretically, though this is of less concern as
these losses are relatively small. More significantly, as men-
tioned earlier, the preliminary results do not account for the
effects of the mouthpiece, a model component that is more
difficult to model and/or measure. Because of the time-
varying nature of the problem in completing the inverse filter
(3) for the more general case (for an instrument where each
tone hole may be either open or closed), a technique is
needed for dynamically estimating filter elements, either
lumped or individually, during instrument performance. So
as not to impact the player or encroach on their playing
space, it is most preferable to estimate these losses directly
from the signal recorded outside the clarinet bell.

A. Inferring round-trip propagation losses

Assume that for over a short period of time the reed
pulses do not change substantially, that is, they are periodic.
In the presence of a periodic output yLðtÞ, the copies of the
reed instrument response to prior reed pulses are aligned in
time. This can be seen in Fig. 10, where instrument impulse
responses are incrementally time shifted to the left by one
period to show that a given period 4s, the time taken for two
round trips from the mouthpiece to the bell and back again,
will be in phase with previous periods, and that the positive
and negative pulses making up the period will align in time.

Denoting the losses due to one round-trip propagation
from the mouthpiece to the bell and back again by

gðzÞ ¼ k2ðzÞRBðzÞRMðzÞ; (19)

the reed instrument signal transform can be written as

YLðzÞ ¼ z$MkðzÞTðzÞ 1þ z$2MgðzÞ
1$ z$4Mg2ðzÞ

" #
XðzÞ; (20)

FIG. 9. (Color online) A recording of the lowest note on a clarinet played
with all tone holes closed (lower) is shown with estimated volume flow
pulses (upper) obtained by directly applying inverse filter (3), with wave-
guide elements obtained theoretically and by applying the measurement
technique described in Sec. IV A.
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which is exactly equivalent to Eq. (1), but more conveniently
illustrates the makeup of the period of 4M, where M is the
time, in samples, needed to propagate the length of the bore.
Equation (20) also lumps the losses into a single element
g(z), defined in Eq. (19), which is more easily estimated than
the individual elements of which it is comprised.

In the presence of a periodic reed pulse, the instrument
signal is also periodic, that is

~YLðzÞ ¼ ~HðzÞ ~XðzÞ; (21)

where the tilde represents the transforms of single periods
of instrument and reed pulse signals, and where ~HðzÞ is
given by

~HðzÞ ¼ z$MkðzÞTðzÞ 1þ z$2MgðzÞ
1$ z$4Mg2ðzÞ

" #$ %

4M

; (22)

with the operator f'g4M representing the transform of an
impulse response made periodic, with period 4M. Because
the period is 4M, instances of z$4M can be removed and
Eq. (22) may also be written as

~HðzÞ ¼ z$MkðzÞTðzÞ 1þ z$2MgðzÞ
1$ g2ðzÞ

" #$ %

4M

: (23)

Recall from the flow description in Sec. II that for every reed
pulse, there are two round trips from the mouthpiece to the
bell and back again, yielding a periodicity in the flow that
corresponds to that of the pressure (as seen in Fig. 2), with
the pressure showing two distinct halves—one where the
pulse is positive and one where it is negative. With this in
mind, it may be seen that the first term in the numerator of

the periodic transfer function (23) contributes mostly to the
first part of the period initiated by the positive pressure
pulse, while the second term contributes mostly to the sec-
ond half of the period, initiated by the negative pulse 2M
later. That is, components of the output signal during the sec-
ond half of the period have been roughly filtered by g(z)
compared to what they were in the first half of the period.
Ideally, therefore, taking the spectral ratio of the first and
second halves of the instrument period would yield an esti-
mate of g(z).

The difficulty is that in practice, the first and second
parts of the clarinet period do not contain disjoint contribu-
tions. Though the time needed for the round-trip losses to
decay is typically less than half a period, the duration of a
reed pulse is ordinarily longer, causing an overlap in the
contributions of the two phases of the period. This can be
seen in Fig. 11, where an uncharacteristically narrow
pulse yields distinct first and second halves of an instrument
signal period, with one decaying completely before the onset
of the next. The more realistic pulse width, however, pro-
duces a first and second half with no clear separation
between the two. This smearing in time, and the difficulty in
isolating the first and second parts of the period, make taking
the spectral ratio directly an insufficient method for estimat-
ing g(z).

In Ref. 16 an attempt was made to separate the time-
aliased components by first considering their sum and their
difference, effectively creating an artificial “echo” that can-
cels a portion of the feedback. In this solution, the spectral
ratio of the sum and difference was used to develop an
expression for the estimator g(z). Though the period of the
clarinet signal could be determined using pitch detection,
and the half periods found at zero crossings, the cancellation
echo was not sufficient for isolating the half periods. In addi-
tion, it was unclear where the period of the signal began.

FIG. 10. (Color online) Reed instrument impulse responses are incremen-
tally time shifted to the left by one period 4s, the time taken for two round-
trips from the mouthpiece to the bell and back again, showing a time
alignment of the positive and negative pulses making up the current, and
previous period(s).

FIG. 11. (Color online) The first and second parts of a clarinet signal period
are clear when the reed pulse width is significantly less than half the period
(upper). More typically, however, the width approaches the half period, and
as a result the clarinet signal will no longer contain disjoint contributions.
This time aliasing makes it difficult to take the spectral ratios of the first and
second halves of the period to obtain the estimate g(z) in Eq. (19).
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As g(z) represents an attenuation, it is expected that the
spectral ratio of the first and second halves of the period
would be small, and thus another approach would be to find
the point in time where the spectral ratio is minimized. This
approach was found to be much less robust, however, than
the preferred method of using the instrument signal autocor-
relation computed over a sliding window.

B. Finding g(z) using the autocorrelation method

The autocorrelation is zero phase by construction and
thus naturally provides the beginning of the period. It also
has clear first and second phases akin to what is seen in the
clarinet signal period. The time evolution of the autocorrela-
tion of a clarinet signal is shown in Fig. 12 by overlaying
periods of a running autocorrelation computed at several
times during the note. There is a dominant main lobe corre-
sponding to the reed pulse, and an inverted secondary lobe
corresponding to the reed pulse round trip along the instru-
ment, with this structure becoming increasingly prominent
as the note moves into the steady state.

These features may be explained by considering the
power spectrum, the transform of the autocorrelation. The
power spectrum of the periodic instrument signal can be
written as

~YLðzÞ
&& &&2¼ ~HðzÞ

&& &&2 ' ~XðzÞ
&& &&2; (24)

where ~HðzÞ
&& &&2 is given by

~HðzÞ
&& &&2

¼ kðzÞTðzÞj j2
1þgðzÞg)ðzÞþz$2MðgðzÞþg)ðzÞÞ

1$g2ðzÞj j2

( )

4M

;
(25)

which uses the fact that a time advance of 2M is equivalent
to a time delay of 2M in the presence of a periodic impulse

response of 4M. The two lobes of the autocorrelation are
then seen to be associated with the autocorrelation of the
reed pulse filtered by 1þ g(z)g*(z) for the main lobe, and fil-
tered by g(z)þ g*(z) for the side lobe at the half period 2M
later.

If the reed pulse were sufficiently short, then g(z) could
be found by forming the spectral ratio of the first and second
halves of the autocorrelation, (g(z)þ g*(z))/(1þ g(z)g*(z)),
and then solving numerically to obtain an exact solution for
g(z). However, as previously discussed, the volume flow
pulse is typically longer than half a period, causing a smear-
ing in time between the two halves. Therefore, improved
results are expected by finding g(z) using an optimization.

Note that if the autocorrelation were filtered by

HcðzÞ ¼ 1þ gðzÞg)ðzÞ $ z$2MðgðzÞ þ g)ðzÞÞ; (26)

the resulting sequence would have transform

~YLðzÞ
&& &&2'HcðzÞ

¼ ~HðzÞ
&& &&2'HcðzÞ' ~XðzÞ

&& &&2

¼ kðzÞTðzÞj j2
ð1þgðzÞg)ðzÞÞ2$ðgðzÞþg)ðzÞÞ2

1$g2ðzÞj j2

( )

4M

* ~XðzÞ
&& &&2; (27)

producing a cancellation at lag 2M and thus the expectation
of little energy around the half period. Accordingly, g(z)
is estimated as the filter that produces minimum energy near
the half period of the autocorrelation filtered by Eq. (26).

This approach is used to estimate g(z) for the same clari-
net note used in Sec. IV C, and is shown in Fig. 13 along with
the same filter constructed using the measured reflection
R̂BðxÞ, theoretical wall loss k, and scalar mouthpiece/reed
reflection RM¼ 0.9 described in Sec. IV C. That the estimated

FIG. 12. (Color online) A running autocorrelation of a clarinet signal (over-
laid) showing both the main positive lobe followed by the negative lobe, as
well as the increased prominence of both as the clarinet tone modes into its
steady state.

FIG. 13. (Color online) Round-trip losses gM, constructed with theoretical
k, a scalar mouthpiece/reed reflection RM¼ 0.9, and measured bell reflection
R̂BðxÞ, and gR, estimated as the filter that produces minimum energy near
the half period of the running autocorrelation when filtered by Eq. (26).
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and constructed filters gR and gM, respectively, shown in the
time domain in Fig. 13 to better illustrate phase, are so similar
in spite of being derived using very different techniques,
gives confidence in the validity of the filter estimated from
the recorded signal using the autocorrelation-optimization
method.

The g(z) estimated from the clarinet signal autocorrela-
tion is then used to complete the inverse filter (3) which,
when applied to the same clarinet note used in Sec. IV C, pro-
duces the reed pulse sequence shown in Fig. 14. The results
are comparable, and even considerably improved, to those
seen in Fig. 9, with the estimated reed pulses having the gen-
erally expected features—a slow rise and fall, followed by a
short period of relatively small constant (or zero) flow. The
fact that these features are even more prominent in Fig. 14
suggests an improvement to the preliminary results shown in
Fig. 9, and possibly indicating that the unknown mouthpiece/
reed reflection RM(z) has more significance than the simple
scalar loss frequently used in many model approximations
(including the one presented in Sec. IV).

Finally, it should be noted that though no assumption is
made of the waveguide elements when estimating g(z), the
reed pulse sequence in Fig. 14 is obtained by completing the
inverse filter (3) with the bell’s measured transmission filter
T̂BðxÞ, obtained as described in Sec. IVA. As previously
noted, this is expected to change during performance and
therefore its use presents an approximation. Since, however,
it is not part of the recursive portion of the inverse filter, its
approximation is expected to have less impact on the results,
since an accurate g(z), which represents recursive losses in
the instrument, has considerably more importance. Dynamic
estimation of the bell’s transmission filter is left for future
work. In the current application, however, as described in
Sec. I, these results are sufficient for extracting and charac-
terizing the reed pulse behavior for purpose of virtual instru-
ment control.

VI. CONCLUSION

In this work a method is presented for estimating the
reed pulse sequence from a clarinet recording during instru-
ment performance. An inverse filter is formed to obtain the
volume flow given the clarinet signal recorded at the bell,
but can be computed only by obtaining expressions for the
bell reflection and transmission, reflection at the mouth-
piece/reed, and the bore propagation losses. To obtain target
behavior and a basis for evaluation, the special case of the
clarinet’s lowest note—played with all tone holes closed—is
first considered. In this case, the inverse filter is constructed
with the bell reflection and transmission filters estimated
from measurement, the theoretical round-trip wall losses
describing cylinders, and a simple scalar loss for the reed/
mouthpiece reflection.

Subsequent results suggest that, when compared to the
target, the time-varying component in the mouthpiece may
be more significant than a scalar approximation. In addition,
when the performer begins opening and closing tone holes
during performance, the elements comprising the inverse fil-
ter become time varying, thus invalidating both the use of
the bell reflection and transmission filters obtained a priori
and the theoretically modeled wall loss filter for cylindrical
tubes.

To address the time-varying nature of the estimation
problem, the round-trip loss g(z) in the bore, a filter lumping
propagation and boundary loss, is estimated from the clarinet
signal by first considering the signal’s periodic structure,
with the period having two distinct halves, one where the
pulse is positive and one where it is negative. It is shown
that this may be interpreted as components of the output sig-
nal during the second half of the period being roughly fil-
tered by g(z) compared to what they were in the first half of
the period. Because of time-aliasing between the first and
second halves, however, along with the difficulty in finding
the beginning of the period, taking the spectral ratio of the
first and second halves of the instrument period is insuffi-
cient for estimating g(z).

The solution presented here for estimating the round-
trip loss g(z) and subsequent computation and application of
the inverse filter involves taking the clarinet signal’s running
autocorrelation. As the autocorrelation preserves the perio-
dicity and is zero phase by construction, it naturally provides
the beginning of the period. The autocorrelation also dis-
plays a positive and negative lobe, the features of which are
explained by considering the signal’s power spectrum, the
transform of the autocorrelation. The round-trip filter g(z) is
thus iteratively estimated by constructing an optimization
function from the first and second phases of the autocorrela-
tion, which, when applied to the autocorrelation of the peri-
odic reed pulse, would cause a cancellation (or noticeable
reduction in energy) at the half period for optimal g(z). Thus
g(z) is iteratively estimated as the filter producing minimum
energy near 2M for a periodic sequence with period 4M.

The filter g(z) is used to complete the inverse filter, which
is then successfully applied to the clarinet signal to yield a
sequence of reed pulses having the generally expected fea-
tures of volume flow—a slow rise and fall, followed by a

FIG. 14. (Color online) Reed pulse, estimated using the autocorrelation
method and optimization (upper), along with original clarinet signal (lower).
Notice improvements to the target in Fig. 9. This is likely due to the fact
that the mouthpiece reflection is estimated as RM¼ 0.9, but is actually
included in the autocorrelation/optimization method for estimating g.
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period of constant (or zero) flow indicating a closed reed. As
the reed pulse holds information related to embouchure and
input pressure, its estimation can allow for further extracting
of playing parameters by observing pulse characteristics such
as contours, closure rates, value crossings. etc., or by calibrat-
ing to the output of a physical model of a reed, allowing for
estimation of physical playing parameters such as blowing
pressure or the reed tension/resonance.
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