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Summary
One-dimensional digital waveguides are widely used to model traveling pressure waves along wind instrument
bores comprised of concatenated cylindrical or conical sections. Waveguide filter elements model frequency-
dependent losses and delay (dispersion) occurring during propagation and at any boundary or discontinuity pro-
ducing reflected and transmitted waves. In this work, a technique is described for estimating wind instrument
waveguide elements from several measurements of the system’s impulse response, each measurement taken with
the system having incrementally varying termination/boundary conditions. The measured impulse responses yield
sequences of multiple arrivals from which estimates of waveguide element transfer functions may be formed. The
measurement and post signal processing technique is explored using simple structures consisting of cylindrical
and conical tubes, as these are well described theoretically and provide a basis for validating measured data. All
waveguide elements necessary for modeling typical wind instrument bores are collected here, each presented
with a theoretical description and accompanying measurement. The measurement and processing system is then
shown to yield data closely matching the theory, thus providing confidence that the technique may be extended
to accurately measure structures which are more difficult to describe theoretically, such as an instrument’s flaring
bell.

PACS no. 43.75.Wx, 43.75.Yy, 43.75.Zz

1. Introduction

Computer simulations involving wave propagation in one
dimension often make use of the digital waveguide, or bi-
directional delay line [1]. The theory of digital waveguide
synthesis and its use in modeling musical instruments is
well documented [1, 2, 3]. It is a particularly practical syn-
thesis technique for real-time interactive computer music
instruments as it is computationally efficient, with musi-
cally relevant control parameters easily changed in real
time.

When modeling wind instrument bores that are cylin-
drical and/or conical, a waveguide section is used, incor-
porating a pure delay corresponding to the length (or de-
sired fundamental frequency) of the bore and digital fil-
ters to account for losses and dispersion of the propagating
wave, such as due to viscous drag and thermal conduction
occurring along the bore walls [4, 5, 6]. Additional filter-
ing is required at waveguide section boundaries, such as
an open or closed termination, or a junction with one or
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more waveguide sections, as these change the characteris-
tic wave impedance and result in a reflection and a com-
plementary transmission of the wave. Waveguide models
of acoustic tubes and musical instrument bores therefore
comprise three types of waveguide elements: 1) a waveg-
uide section, modeling bore wave propagation and loss,
2) a termination, modeling bore end conditions, and 3) a
scattering junction, modeling the bore scattering, as in the
connection of waveguide sections.

Depending on the shape of the bore being modeled,
a one-dimensional digital waveguide model may not be
sufficiently accurate since the waveguide section models
only planar or spherical wave propagation in cylindrical
or conical tubes, respectively. That is, instruments depart-
ing from these simple shapes, such as the flared opening
of many brass instruments, generate continuous reflection
and transmission of the propagating wave that must ei-
ther be modeled using a piecewise connection of several
waveguide sections corresponding to the instrument’s con-
tour, or by obtaining the bore’s (or bore section’s) mea-
sured or theoretical reflection function.

If a measured reflection function of an entire instru-
ment body is used in the context of a real-time paramet-
ric model, further processing will be necessary to separate
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components of the response that can be made parametric.
For example, in work by Rodet and Vergez [7], the down-
stream pressure of a lip-reed model is obtained by con-
volving the input bore pressure with the measured reflec-
tion function of a trumpet bore and bell, with the delay cor-
responding to the length of the trumpet’s cylindrical sec-
tion made variable according to the user’s desired sound-
ing frequency. This would be equivalent to a waveguide
model having a single cylindrical waveguide section with
a reflection function corresponding to the non-cylindrical
segment of the measurement.

Several techniques exist for measuring acoustic proper-
ties of tubes and wind instrument bores, each one devel-
oped for obtaining the acoustic information required for a
particular application. Probably most notable and common
among the acoustics community are techniques for obtain-
ing the bore’s input impedance as a function of frequency
[8, 9, 10, 11], as this measurement fully characterizes the
instrument and may be used to obtain its resonances as
well as to estimate its area function, as was done for the
vocal tract [12]. Though the input impedance of a tube
is closely related to its impulse response, since a change
of impedance results in reflection and transmission of the
propagating wave, it is not as easily incorporated into a
waveguide model because it describes the acoustics of the
whole instrument, not the behavior of individual sections
and elements comprising the model. This may be prob-
lematic (though not necessarily insurmountable) from an
instrument design point of view, when it is desirable to
leave the model’s control parameters intact.

Perhaps more relevant to the work presented here are
the time-domain techniques for obtaining reflection trans-
fer functions of instrument bores or bore sections. Ag-
ulló et al. [13] present a system for measuring the re-
flection function of a discontinuity in a divergent “cylin-
droconical” acoustic tube. Here, two diametrally opposed
microphones—the sum of their signals eliminating unde-
sired higher-order modes with an odd number of diame-
tral nodal lines—are placed at sufficient distance from the
discontinuity and the driver that a measurement of a short
pulse-like excitation, followed by it’s reflection off the dis-
continuity, can be made before overlapping with any other
reflections in the system setup.

In work by Välimäki et al. [14] a measurement tech-
nique is presented in which two microphones are placed at
a distance from one another along the length of the bore
such that right and left (incident and reflected) travelling
waves may be separated to estimate propagation loss and
reflection at a tube’s open end. The work mentions the dif-
ficulties involved in driving the system with a pulse and
the necessity for considering the transfer function of the
speaker when producing a driving signal that is a“perfect”
impulse. In their method, an impulse is sent to the driver,
the response is recorded, and the driving impulse is then
computed using inverse filtering.

In another common measurement technique referred to
as acoustic pulse reflectometry [15], a pulse drives a suffi-
ciently long source tube to which an instrument is affixed,

with reflections from the instrument being recorded with-
out interference from any reflections in the source tube.
As with the input impedance curves discussed above—in
fact this technique is often used to obtain input impedance
curves—this measurement is used to describe the proper-
ties of the complete tube using a single round-trip propaga-
tion of the excitation signal along its length—not of single
waveguide elements.

In methods using a pulse as the excitation signal, there
are trade offs between the width of the pulse being sent
down the tube, the length of the reflected signal, the SNR
and the covered bandwidth. Though a loud narrow pulse
is desirable, both for having sufficient energy to excite
the system above the noise floor and to cover a broader
frequency bandwidth, such a pulse can cause the speaker
to distort. Sufficient energy may be applied to the system
by making the pulse longer. A wider pulse has a reduced
bandwidth and restricts placement of the microphones,
which need to be sufficiently spaced to avoid interference
between incident and reflected pulses.

It should be noted that it has become increasingly com-
mon practice to use excitation signals such as a swept si-
nusoid, essentially an impulse smeared in time, as this has
sufficient energy to excite the system above the noise floor
without causing the distortion that would inevitably re-
sult from using an impulse with similar energy [16]. All
the techniques above could likely be improved using the
swept-sine technique, with mathematical post-processing
leading to an excitation signal that is essentially a pulse.
In so doing, the duration of the input signal is completely
divorced from the effective pulse sent out the drive. That
is, regardless of the choice of swept-sine length, the in-
put driving signal will always be post-processed so its ef-
fective length is that of an impulse filtered by the speaker
transfer function.

In an additional multiple microphone technique to the
one cited above, Antoine Lefebvre et al. [17, 18] posi-
tion multiple microphones along the length of the bore
and excite the system with white noise, providing suffi-
cient energy to obtain as good a SNR as if using a swept
sinusoid. By analyzing the signals simultaneously received
at each of the microphones, the left and right going wave
may be separated and the reflection function inferred. The
disadvantage of this system as compared to the work pre-
sented here is that it uses multiple microphones, requir-
ing separate processing for different frequency bands: the
further spaced microphones give information on low fre-
quencies while the closer microphones give information
on high frequencies. Though certainly a reasonable tech-
nique, there is the added task of calibrating the micro-
phones and piecing together the processing results from
different frequency bands, requiring less straight forward
signal processing.

In this work, an acoustic measurement and signal pro-
cessing technique is presented which allows the complete
system impulse response—the sequence of multiple ar-
rivals from the tube and not just its single round-trip re-
flection function—to be interpreted in the time domain
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Figure 1. Example waveguide model of the open cylicone show-
ing an example application of three waveguide elements.
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Figure 2. A waveguide section showing a pure delay of M
samples corresponding to a physical length L, and frequency-
dependent propagation losses λ(ω), which account for magni-
tude attenuation and phase velocity (dispersion).

and used for estimating waveguide model element trans-
fer functions. Here, measurements are made incrementally
on four tube structures, each one specially designed and
built to yield a measurement corresponding to an addi-
tional waveguide element leading to the final structure, a
cylinder with an attached cone, henceforth referred to as a
cylicone (Figure 1). Though it would certainly be possible
to estimate the input impedance from the measurements
presented here, it is not the aim of this work. Rather, the
focus is on analyzing and interpreting the information con-
tained within a sequence of impulse arrivals—an in-depth
discussion of the time-domain impulse response waveform
typically omitted from the literature—and using the results
to estimate filter components of a waveguide model.

The measurement setup has the benefit of being ex-
tremely simple, requiring only a single microphone and
a co-located speaker at one end of the tube (the place-
ment remains the same for each tube structure and for each
waveguide element being estimated) as well as a full du-
plex audio device capable of simultaneously sending and
receiving a signal. This eliminates the need to calibrate
multiple microphones and, since the swept-sine excitation
technique is used, provides more accurate and distortion-
free measurements. In addition, because the placement of
the speaker and microphone is at one end of the tube, the
location of the mouthpiece in most western wind instru-
ments, the measured impulse responses can be directly
incorporated into a reed model requiring a value for the
downstream (bore) pressure to determine the reed’s over-
all driving force [19].

The measurements are validated (as one must be certain
a measurement technique is yielding expected data free
of unexplained artifacts) using four tube structures com-
prising cylinders and cones, as the theory for these shapes

is well known and provides a good basis for comparison
with the estimated element transfer functions. If measure-
ments yield data showing good agreement with theory for
these shapes, it suggests that the technique can be easily
extended to include shapes that are much more difficult to
account for theoretically.

Section 2 serves to collect the theory describing waveg-
uide elements. In addition to forming the theoretical ba-
sis for assessing the quality of the proposed measurement
technique, this also provides a single source for wind in-
strument waveguide element design. Section 3 presents
the measurement technique and setup used to obtain the
impulse responses from which waveguide element trans-
fer functions may be estimated. Section 4 presents the
measured data corresponding to the four tube structures,
describes the estimation of each waveguide element, and
compares the measured and theoretically predicted waveg-
uide element transfer functions, shown to have very good
agreement. The detailed illustration and discussion of the
waveguide elements observed within the echo responses
of the four impulse responses facilitates the discussion of
the signal processing required to isolate and estimate each
waveguide element transfer function.

2. Waveguide theory

2.1. The waveguide section: wave propagation

The digital waveguide, or bidirectional delay line, imple-
ments d’Alembert’s solution for plane waves propagating
along a lossless cylindrical tube,

y(t, x) = y+(t − x/c) + y−(t + x/c), (1)

where the positive and negative superscripts indicate trav-
elling pressure waves y moving in opposite directions, t
and x are the time and spatial variables, respectively, and c
is the propagation speed. Spherical waves in conical tubes
may be similarly modeled as they are the sum of traveling
waves moving toward and away from the cone apex. Due
to spherical spreading, waves propagating from a distance
r0 from the cone apex, to a distance r1 from the cone apex,
will experience a pressure scaling of r0/r1.

The digital waveguide, Figure 2, is equivalent to sam-
pling (1), where the delay in samples M is proportional to
the tube section length L. In practice, it is also useful to
account for frequency-dependent propagation losses, with
transfer function having both a magnitude and phase re-
sponse, arriving from viscous drag and thermal conduc-
tion along the tube walls. The propagation constant per
unit length is given by

Γ(ω) = α(ω) + j
ω

v(ω)
, (2)

where α(ω) is the attenuation coefficient, v(ω) is the phase
velocity, and ω is the angular frequency [4]. The attenua-
tion and phase delay over a tube of length L is then given
by

exp − Γ(ω)L .
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Table I. Molecular constants evaluated at 26.85oC, as provided
by [4].

Symbol Values Units

Air density ρ 1.18 × 10−3 g/cm2

Viscosity η 1.85 × 10−4 g/(s cm)
(Prandtl)

1
2 ν 0.841

Ratio of
specific heats γ = Cp/Cv 1.40
Free space
sound speed c 3.47 × 104 cm/s

Denoting by λ(ω) the one-way loss transfer function, and
by L/c, the one-way propagation time, the propagation
loss is given by exp[−jωL/c] · λ(ω), where

λ(ω) = exp − α(ω)L − jωL(1/v(ω) − 1/c) . (3)

An approximation to the phase velocity, valid for all tube
radii is [6]

v(ω) ≈ c
Avrv (1 + rv/κ)

1 + Avrv (Bv + rv/κ)
, (4)

where rv is the ratio of the pipe radius a to the thickness of
the viscous boundary layer given by

rv = a
η

ωρ

− 1
2

, (5)

and the parameters Av and Bv , given by

Av =
1

2
√
γ
, Bv = 1 +

[1 + (γ − 1)/ν)]√
2κ

, (6)

were selected to match the limiting phase velocity behav-
ior, and the parameter

κ = 2γ, (7)

marks the ratio rv delimiting the small-radius and large-
radius tube regions [6]. The molecular constants in (5) and
(6) are defined in Table I and suggested values are pro-
vided.

Similarly, an approximation to the attenuation coeffi-
cient is

α(ω) ≈ ω

crv

Aα + Bα (rv/κ)
1 + rv/κ

, (8)

where the parameters Aα and Bα were again selected to
match the limiting attenuation coefficient behavior and are
given by

Aα = 2 γ, Bα =
1 + (γ − 1)/ν

√
2

. (9)

Figure 3 shows the approximations for phase velocity
and attenuation as given by (4) and (8) along with their
complete and limiting behaviors as given by Benade [4].
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Figure 3. Modeled (solid) phase velocity (top) and attenuation
(bottom) and their complete and limiting behavior (dashed).

T2(ω)

R 1(ω) R 2(ω)

T1(ω)

Figure 4. Scattering. A change of impedance may occur as a two-
port scattering junction between two waveguide sections con-
sisting of frequency-dependent reflection R1,2(ω) and amplitude
complementary transmission T1,2(ω).

R (ω)

T (ω)

R (ω)

Closed Open

Figure 5. Termination. A change of impedance in a waveguide
section may occur as a termination: closed with reflection, or
open with a reflection R(ω) and corresponding complementary
transmission.

2.2. Scattering: reflection and transmission

Any change of impedance which may be the result of a
termination (either open or closed as discussed in the fol-
lowing section 2.3), a change in the tube’s cross-sectional
area, or a connection to another acoustic element, requires
filtering to account for the frequency-dependent reflec-
tion R1,2(ω) and amplitude complementary transmission
T1,2(ω) that will result between two adjacent waveguide
sections (see Figure 4) or at a termination (see Figure 5).
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A change in the wave impedance at the boundary be-
tween two tube elements will result in a reflection with
transfer function

R(ω) =
Z2(ω)/Z1(ω) − 1
Z2(ω)/Z1(ω)∗ + 1

, (10)

where Z1 and Z2 denote the adjacent wave impedances,
and ∗ indicates the complex conjugate. The amplitude
complementary transmission transfer function is given by

T (ω) = 1 + R(ω) (11)

for pressure waves [20].
For plane waves in cylindrical tubes (as denoted by the

y subscript) the impedance is given by

Zy =
ρc

S
, (12)

where S is the cross-sectional area of the tube.
For spherical pressure waves in conical tubes (as de-

noted by the n subscript) propagating away from the cone
apex (denoted by the + superscript), the impedance is de-
pendent on frequency ω and the distance r from the obser-
vation point to the cone apex, and is given by

Z+
n (r;ω) =

ρc

S

jω
jω + c/r

. (13)

For spherical waves propagating toward the cone apex, the
impedance is given by

Z−
n (r;ω) =

ρc

S

jω
jω − c/r

= Z+∗
n (r;ω). (14)

2.3. Termination: reflection and transmission

A special case of a change in cross section is at the in-
strument’s open end. In this case, the complex terminat-
ing impedance Z2(ω) = ZL(ω), may be a complicated
function of frequency. In the case of a cylindrical tube, an
expression is available by Levine and Schwinger in terms
of Bessel and Struve functions [21]. There is no known
expression for conical bores.

The ratio ZL/Z1 may be approximated by

ZL/Z1 ≈
jka

ζ + jka
, (15)

where k = ω/c is the wavenumber, a is the radius of the
cylinder, and ζ is a scalar near one which determines the
transition between the low-frequency and high-frequency
behaviour. The expression (15) follows the gross be-
haviour described by Levine and Schwinger. The reflec-
tion filter for the open end on a cylindrical tube may then
be approximated by

Rop(ω) =
ZL/Z1 − 1
ZL/Z1 + 1

=
−1

1 + 2jka/ζ
, (16)

yielding a one-pole low-pass filter with a cutoff frequency
of ω = ζc/a.

cylinder, speaker−closed

cylinder, speaker−open

2 meters

cylicone, speaker−closed

cylicone, speaker−open

1)

2)

3)

4)

Figure 6. Four simple tube structures, each terminated at one end
with a speaker and having a co-located microphone. The follow-
ing terminations are applied at the end opposite the speaker and
microphone: 1) a cylinder closed with Lucite to ensure a perfect
reflection (cylinder, speaker-closed), 2) an open cylinder (cylin-
der, speaker-open), 3) a cylicone terminated with a glass sphere
(with radius nearly that of the cone) ensuring a perfect reflection
of spherical waves (cylicone, speaker-closed), 4) an open cyli-
cone (cylicone, speaker-closed).

3. Measurement configuration

To isolate each of the waveguide model elements seen in
Figure 1, a test signal, a swept sinusoid similar to that
described by Farina [16], was input through a speaker at
one end of four tube configurations: a cylindrical tube, and
the cylinder with an attached conical flare (cylicone), each
measured with the end opposite the speaker closed, then
open (see Figure 6).
1. Cylinder, closed end. A two-meter-long cylinder is

rigidly terminated at one end to ensure a perfect re-
flection. This configuration allows measurement of the
speaker output σ(ω), the speaker reflection ρ(ω), and
the wall loss λ(ω) transfer functions, as described in
section 4.1. The arrival responses Ln for this measure-
ment may be seen in Figure 7.

2. Cylinder, open end. Opening the cylinder allows mea-
surement of the reflection at the open end of a cylinder,
Rop(ω), as described in section 4.2. Figure 9 shows the
measured responses.

3. Cylicone, closed end. The addition of a conical flare
with a spherical termination (to ensure a perfect reflec-
tion) to the above cylindrical tube allows reflection and
transmission at the junction to be observed from the
measured responses shown in Figure 11, as described
in section 4.3.

4. Cylicone, open end. Opening the conical end allows us
to observe the corresponding reflection from the cyli-
cone response shown in Figure 13, as described in sec-
tion 4.4.
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As described below, by using a long swept sinusoid to ob-
tain a system impulse response for each structure, the sys-
tem is excited with sufficient energy to achieve a signif-
icantly larger SNR than could be obtained with a simple
pulse, while achieving the bandwidth of interest, in this
case up to 10kHz. The impulse responses measured here
have a peak level roughly 70 dB above the noise floor
standard deviation. There is no limit to the duration of the
swept sinusoid, i.e. it’s length is not bounded by the mi-
crophone placement, the length of the tube or any other
potential for overlap between signal and reflections seen
in other methods, since the signal recorded at the micro-
phone is processed to produce the response of the system
had it been excited with a pulse only one sample long.

The test signal used was a sinusoid exponentially swept
from 20 Hz to the band edge of 22.05 kHz (half the sam-
pling rate, fs), and with a duration of 220 samples, or about
23 seconds. Expressed mathematically, the sine sweep is
given by

s(t) = sin φ(t) , φ(t) =
t

0
ω(τ) dτ, (17)

where the frequency ω(t) traces out an exponential sweep,

ω(t) = 2πf0eηt, (18)

where η = ln(f0/2fs)/T , with fs being the sampling rate,
f0 the initial frequency, and T the duration of the sweep.

A sine sweep was repeated so that the measured re-
sponse during the second sweep would be the circular con-
volution of the input sweep with the system. In particular,
to recover the system impulse response from the sweep re-
sponse, circular deconvolution may be used. Denoting by
r(t) the system response during the second sweep, we have

ĥ(t) = F−1 Fr(t) Fs(t) . (19)

whereF denotes the Fourier Transform. Expressed in Mat-
lab code, the impulse response h may be found with

h = ifft fft(r)./fft(s) ; (20)

where s contains the sine sweep and r is the system re-
sponse during the second sine sweep.

The input signal and the measured response is sent and
received simultaneously using a full duplex audio device;
in this work the Mac PowerBook running Logic Pro with
the MOTU Traveler audio interface, with 16-bit audio at a
sampling rate of 44.1 kHz was used. Measurements were
taken in a very large room with the apparatus placed five
meters from the nearest reflecting object.

The four simple tube structures in Figure 6 were assem-
bled using PVC tubes and plastic funnels of several sizes.
The cylinder was prepared by placing a speaker (CUI Inc.
CMS0281KLX) at one end, and by press fitting a six-
millimeter-diameter microphone (Panasonic W64M) into
a hole drilled next to the speaker. It is not necessary to
consider or document the precise details of the speaker

and microphone as long as their placement and geome-
try is consistent from one measurement to the next. Any
effects of placement and geometry are eliminated by the
signal normalization and post processing described in the
following section. It is important however, that the mi-
crophone and speaker be placed as close as possible to
each other to minimize the acoustic travel time between
them. In this way the corresponding frequency at which
destructive interference occurs between the signal travel-
ing from speaker to microphone and that returning from
the bore is made large. Destructive interference will result
in a notch in the transfer function and will impact the abil-
ity to take the spectral ratios described in section 4 at that
frequency. In this case, the distance between the micro-
phone and speaker is sufficiently small to ensure that any
spectral nulls would be outside the 10 kHz band of interest.

The cylinder is 2 m long, with an inside radius a = 1 cm,
and the cone is 12.7 cm long with edge radii of a1 = 1 cm,
and a2 = 9.2 cm. Both cylinder and cone are sufficiently
thick to be considered rigid (3 mm and 2 mm, respec-
tively).

The impulse response between the speaker and mi-
crophone was measured for each of the configurations.
The impulse responses were then equalized according to
the first arrival, the speaker-microphone transfer function
σ(ω), to produce the figures shown in section 4. Note that
the first arrival will also contain contributions from evanes-
cent modes, in this case above about 10kHz.

4. Measured responses

In spite of the wide use of digital waveguides for sound
synthesis, it is perhaps less common to observe the be-
haviour of wave propagation in actual acoustic systems
from the same perspective. That is, rather than analyzing a
system purely from its frequency response, it is informa-
tive for analysis, and practical for synthesis, to observe the
effects of each waveguide element in a sequence of multi-
ple arrivals comprising the system impulse response.

4.1. Closed cylinder

A first measurement is taken for the cylinder closed at
the end opposite the speaker, ensuring a perfect reflec-
tion. Comparing arrivals appearing in its impulse response
provides estimates of the propagation loss λ(ω), speaker
transfer function σ(ω) and the speaker reflection function
ρ(ω).

The first four arrivals comprising the measured speaker-
microphone impulse response are shown in Figure 7. The
direct path speaker-microphone response is observed as a
positive pulse labeled L1 at t ≈ 2.5 ms and corresponds
to the equalized transfer function σ(ω). (Note that the
2.5 ms arrival time corresponds to buffering delays be-
tween the sweep and response in the measurement sys-
tem.) This energy propagates down the length of the tube
and is perfectly reflected from the closed end, returning to
the speaker and co-located microphone at t ≈ 14 ms. The

1098



Smyth, Abel: Estimating waveguide model elements ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 95 (2009)

arrival L2 is reflected from the speaker, and the observed
pulse L2 is the sum of the incoming and speaker-reflected
waves. The pulse makes another round trip, eventually
producing the sequence of consecutive equally spaced
pulses observed in Figure 7. There is an attenuation of
the pulse upon each successive reflection. There is also
an observable low-pass filtering, as the signal becomes in-
creasingly smooth and widened with every reflection (Fig-
ure 7).

Given the arrival responses for a closed cylinder, Ln, the
transfer function of the reflection from the speaker may
be estimated. The first arrival, which is the output of the
speaker measured at the mic, consists solely of the speaker
transfer function:

L1 = σ(ω). (21)

The following arrival, L2, consists of the sum of left
and right traveling pressure waves at the microphone po-
sition: the speaker transfer function after having trav-
elled twice the length of the tube (round trip), given by
L−

2 = σ(ω)λ2(ω), and the speaker transfer function with
round trip losses after reflecting from the speaker, L+

2 =
σ(ω)λ2(ω)ρ(ω). The second arrival is expressed as their
sum, and is given by

L2 = L+
2 + L−

2 = σ(ω)λ2(ω) 1 + ρ(ω) . (22)

Each subsequent arrival for the closed cylinder consists of
the previous arrival, with round-trip wall losses of λ2(ω)
and a speaker reflection ρ(ω). The third arrival is therefore
given by

L3 = σ(ω)λ4(ω)ρ(ω) 1 + ρ(ω) . (23)

These three responses are sufficient for defining the inter-
mediate variable

ζ(ω) =
L1L3

(L2)2
=

ρ(ω)
1 + ρ(ω)

, (24)

which yields an estimate for the speaker reflection transfer
function,

ρ̂(ω) =
ζ(ω)

1 − ζ(ω)
, (25)

and the propagation loss λ(ω),

λ̂2(ω) =
L3

ρ̂(ω)L2
. (26)

Figure 8 shows the estimated and theoretical propaga-
tion loss along with the estimated speaker reflection. Note
the good agreement between the estimated and theoreti-
cal propagation losses. The low-frequency attenuation ob-
served in the spectrum of the speaker reflection is likely
due to the speaker being designed to be resonant at low
frequencies. It should be pointed out that there is roughly
a fraction of a dB attenuation in the estimated propagation
loss beyond that theoretically predicted.
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Figure 7. Arrival responses for the closed cylinder, showing in-
dividual pulses and corresponding spectra as combinations of
transfer functions for the speaker σ(ω), wall losses λ(ω), and
speaker reflection ρ(ω).
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Figure 8. Theoretical (upper smooth curve) and estimated (lower
curve 0.5 dB down) propagation losses along with the estimated
speaker reflection (high-pass curve).

4.2. Open cylinder

The open-end reflection transfer function Rop(ω) may
be estimated from the open cylinder impulse response
shown in Figure 9. The low-pass characteristic described
by Levine and Schwinger is apparent in the successive ar-
rivals, which are increasingly smeared over time compared
to their closed-end counterpart shown in Figure 7. Succes-
sive arrivals show the same propagation delay as observed
for the closed cylinder, but in this case with every other re-
flection inverted, and with increased attenuation and low-
pass filtering with each consecutive reflection (Figure 9).
This is expected as the responses Yn have all the losses
of the closed cylinder (propagation and speaker reflection
losses) with the added effect of the open-end reflection.

As with the closed cylinder, the initial response of this
measurement is merely the response of the speaker to an
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Figure 9. Measured impulse response for the open cylinder show-
ing individual arrivals. The open-end transfer function Rop(ω)
may be isolated by comparison with the corresponding closed-
end arrival spectra L2, L3, L4.

impulse, yielding the speaker transfer function, Y1 = σ(ω).
The second arrival, Y2, is similar toL2 but also includes the
open-end reflection

Y2 = σ(ω)λ2(ω)Rop(ω) 1 + ρ(ω) . (27)

Subsequent arrival responses include additional round-trip
wall losses and open-end reflections. The open-end reflec-
tion function may then be estimated as the ratio of the sec-
ond arrival spectra,

R̂op(ω) =
Y2

L2
, (28)

and is seen in Figure 10.

4.3. Closed cylicone

Attaching a conical flare to the cylindrical tube, and termi-
nating with a spherical cap to ensure a perfect reflection,
allows for estimation of the reflection and transmission fil-
ters associated with the junction.

Figure 11 shows the measured impulse response, in-
cluding groups of arrivals resulting from energy reflected
between the end cap and the junction. Consider the indi-
vidual subarrivals within the second arrival group A2 of
Figure 11. The signal from the speaker propagates along
the length of the cylinder to the junction, where part of the
signal is reflected back to the microphone and inverted (as
can be seen from (10) where if Z1(ω) > Z2(ω), the re-
flection R(ω) picks up a negative sign). It appears as the
negative pulse A2,1, with losses having a low-pass char-
acteristic described by Ry(ω), as well as round-trip wall
losses given by λ2

y(ω). The part of the signal that is not re-
flected is transmitted through the junction, with losses hav-
ing a complementary high-pass characteristic Ty(ω). This
signal propagates to the spherical termination where it is
“perfectly” reflected, arriving back at the junction a short
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Figure 10. Estimated and approximate theoretical open-end
cylinder reflection magnitude. The theoretical reflection magni-
tude is a first-order approximation that captures the general low-
pass characteristic. Note that the estimated reflection magnitude
is greater than one at low-frequencies where the speaker doesn’t
generate significant power and more measurement noise is in-
troduced. The measurement matches the approximate theoretical
curve above 2 kHz and within a fraction of a dB otherwise.

0 5 10 15 20 25 30 35 40 45 50
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time - milliseconds

a
m
p
lit
u
d
e

A 2 = ... (see expansion below)

A 1 = σ (ω)

A3 = ...

12 14 16 18 20 22 24
-0.4

-0.2

0

0.2

0.4

time - milliseconds

a
m
p
lit
u
d
e

A 2,1 = σ (ω)λ 2
y(ω)R y(ω)(1 + ρ(ω))

A 2,2 = σ (ω)λ 2
y(ω)λ

2
n(ω)Ty(ω)Tn(ω)(1 + ρ(ω))

Figure 11. Arrival responses are shown with their correspond-
ing transfer functions. The response A2,1 shows a low-pass char-
acteristic expected of a junction reflection, while A2,2 shows a
high-pass characteristic expected of two transmissions through
the junction.

time later (corresponding to twice the length of the cone).
Part of this signal at the junction is transmitted with trans-
fer function Tc(ω), producing the pulse at t ≈ 15 ms (A2,2

in Figure 11), and part is reflected, with transfer function
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Figure 12. Measured (lower line), theoretical (thick line offset by
1.0) and components (upper lines offset by 0.25) for closed cone
second arrival group, corresponding to A2,i.

Rc(ω). Note the doublet nature of the pulse A2,2, with
the steep transition from a positive to a negative peak be-
ing consistent with the high-pass transmission through the
junction. The part of the pulse reflected back toward the
end cap will appear at the junction to be in part transmit-
ted to the cylinder and microphone, and in part reflected
once again toward the end cap.

The first subarrival spectrum is

A2,1 = σ(ω)λ2
y(ω)Ry(ω) 1 + ρ(ω) . (29)

with subsequent ith arrivals having spectrum

A2,i = σ(ω)λ2
y(ω)λ2i

n (ω)

· Ty(ω)Tn(ω)Ri−1
n (ω) 1 + ρ(ω) . (30)

The individual subarrivals shown in Figure 12 were gener-
ated according to (30) using the transmission and reflec-
tion filters described in section 2 for the 45o cone and
one-centimeter radius cylinder measured. The subarrivals
are summed to form the theoretical arrival group shown
in Figure 12. Note the good agreement between the the-
oretical and measured responses. It should be pointed out
that the estimation of the junction transmission and reflec-
tion filters in this case is complicated somewhat by the
overlapping nature of the subarrivals. Rather than fix the
reflection and transmission filters by analyzing individual
arrivals, hypothesized filters are used to generate the entire
arrival group and then adjusted to produce the group best
matching the one measured.

4.4. Open cylicone

Opening the end of the cone produces an impulse response
with similar behaviour as for the closed cylicone, though,
because it is open, the cone termination reflections are in-
verted and attenuated. A positive pulse traveling from the
speaker to the junction is partly inverted upon reflection,
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Figure 13. Arrival responses for the open cylicone showing in-
dividual pulses corresponding to outputs of a combinations of
transfer functions.

arriving at the microphone as a negative pulse, and partly
transmitted through the junction, this time being inverted
at the open cone termination reflection. When the negative
pulse arrives at the junction, a part is transmitted as a neg-
ative pulse to the microphone, and a part is reflected as a
positive pulse back to the open cone termination where it
is again inverted, becoming negative. The negative pulse
propagates back to the junction where it is partly transmit-
ted to the microphone, and partly reflected and inverted,
and so on.

Figure 13 shows the measured impulse response for the
open cylicone. Like the closed cylicone, it exhibits a se-
quence of arrival groups. The N2 subarrival spectra may
be written in terms of the closed cylicone subarrival spec-
tra,

N2,i = A2,iR
i−1
op (ω). (31)

Approximating the reflection from the open cone as a first-
order low-pass filter, with characteristic closely matching
both observed measurement and that described by Levine
and Schwinger (15) for a cylindrical radius equal to the
average of the cone’s edge radii a1 and a2, a theoretical
arrival response is shown in Figure 14 along with its com-
ponent subarrivals and the measured N2 arrival group. As
in the case of the closed cylicone there is good agreement
between the measured and theoretical responses.

5. Results and conclusions

In this work, a measurement technique was presented for
estimating elements comprising a waveguide wind instru-
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Figure 14. Measured (lower line), theoretical (thick line offset
by 1.0) and components (upper lines offset by 0.25) for the open
cone second arrival, corresponding to N2,2.

ment model, including filters used in propagation, scatter-
ing, and termination. The technique measures the impulse
response between the mouthpiece end of the instrument
and a co-located microphone. By comparing correspond-
ing arrivals for different configurations, modeled reflec-
tion, transmission, and loss filters may be identified. To
validate the measurement technique, it was applied to a
simple instrument configuration having a cylindrical bore
connected to a conical bell. The estimated filters and im-
pulse response was seen to closely match the theory, giv-
ing confidence that the measurement method can be gen-
erally applied.

To confirm the good agreement between the measured
and theoretical reflection, transmission, and propagation
elements, waveguide models of the four tube configura-
tions were implemented based on cylinder and cone di-
mensions. Figure 15 shows a close match between mea-
sured and theoretically-derived waveguide model impulse
responses for each of the tube configurations.

This work will facilitate the development of filter com-
ponents for which theoretical solutions may not be avail-
able. In particular, reflection and transmission functions of
wind instrument bores, bells, and mouthpieces can be mea-
sured by comparing the response of a rigidly terminated
tube to that of the tube with the instrument, or instrument
section, affixed.

Acknowledgments

We would like to sincerely thank Theresa Leonard and the
Banff Centre for the Arts for the use of their facilities, John
Lundell, Carr Wilkerson, Michael Coury, and Harrison
Smith for their help in fabricating the experimental setup,
and the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC) for their support. Many thanks are
also extended to the reviewers whose careful reading of
this text, and invaluable comments, have greatly strength-
ened the clarity and accuracy of this work.

0 5 10 15 20 25 30 35 40 45 50

0

2

4

6

8

10

time - milliseconds

a
m
p
lit
u
d
e

Closed Cylinder

M

T

Open Cylinder

M

T

Closed Cylicone

M

T

Open Cylicone

M

T

Figure 15. Measured and theoretically-derived impulse response
for (from bottom to top) a closed cylinder, an open cylinder, a
closed cylicone, and an open cylicone.

References

[1] J. O. Smith: Digital waveguide modeling of musical instru-
ments. www-ccrma.stanford.edu/˜jos/waveguide/, 2003.
last viewed 12/4/2008.

[2] V. Välimäki: Discrete-time modeling of acoustic tubes us-
ing fractional delay filters. Dissertation. Helsinki Univer-
sity of Technology, Faculty of Electrical Engineering, Lab-
oratory of Acoustic and Audio Signal Processing, Espoo,
Finland, 1995. Report no. 37.

[3] D. P. Berners: Acoustics and signal processing techniques
for physical modeling of brass instruments. Dissertation.
Stanford University, Stanford, California, July 1999.

[4] A. H. Benade: On the propagation of sound waves in a
cylindrical conduit. Journal of the Acoustical Society of
America 44 (1968) 616–623.

[5] D. H. Keefe: Acoustical wave propagation in cylindrical
ducts: Transmission line approximation for isothermal and

1102

http://www.ingentaconnect.com/content/external-references?article=0001-4966(1968)44L.616[aid=7112716]
http://www.ingentaconnect.com/content/external-references?article=0001-4966(1968)44L.616[aid=7112716]
http://www-ccrma.stanford.edu/jos/waveguide/


Smyth, Abel: Estimating waveguide model elements ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 95 (2009)

nonisothermal boundary conditions. Journal of the Acous-
tical Society of America 75 (Januaray 1984) 58–62.

[6] J. Abel, T. Smyth, J. O. Smith: A simple, accurate wall loss
filter for acoustic tubes. DAFX 2003 Proceedings, London,
UK, September 2003, International Conference on Digital
Audio Effects, 53–57.

[7] X. Rodet, C. Vergez: Physical models of trumpet-like in-
struments: Detailed behavior and model improvements.
Proceedings of ICMC 1996, Clear Water Bay, Hong-Kong,
August 1996, International Computer Music Conference.

[8] A.H.Benade, M.I.Ibisi: Survey of impedance methods and
a new piezo-disk-driven impedance head for air columns.
Journal of the Acoustical Society of America 81 (April
1987) 1152–1167.

[9] J.Kergomard, R.Caussé: Measurement of acoustic impe-
dance using a capillary: An attempt to achieve optimiza-
tion. Journal of the Acoustical Society of America 79
(April 1986) 1129–1140.

[10] T. Ossman, H. Pichler, G. Widholm: Bias: A computer-
aided test system for brass wind instruments. Audio En-
gineering Society Preprint, October 1989.

[11] J. Epps, J.R.Smith, J.Wolfe: A novel instrument to mea-
sure acoustic resonances of the vocal tract during phona-
tion. Measurement Science and Technology 8 (July 1997)
1112–1121.

[12] M. M. Sondhi, J. Resnick: The inverse problem for the vo-
cal tract: Numerical methods, acoustical experiments, and
speech synthesis. Journal of the Acoustical Society of
America 73 (March 1983) 985–1002.

[13] J. Agulló, S. Cardona, D. H. Keefe: Time-domain deconvo-
lution to measure reflection functions for discontinuities in

waveguides. Journal of the Acoustical Society of America
97 (March 1995) 1950–1957.

[14] V. Välimäki, B. Hernoux, J. Huopaniemi, M. Karjalainen:
Measurement and analysis of acoustic tubes using signal
processing techniques. Finnish Signal Processing Sympo-
sium (FINSIG’95), Espoo, Finland, June 1995.

[15] D. B. Sharp: Acoustic pulse reflectometry for the measure-
ment of musical wind instruments. Dissertation. University
of Edinburgh, 1996.

[16] A. Farina: Simultaneous measurement of impulse response
and distortion with a swept-sine technique. Proceedings of
the 108th AES Convention, Paris, France, February 2000,
18–22.

[17] A. Lefebvre, G. Scavone, J. Able, A. Buckiewicz-Smith:
A comparison of impedence measurements using one and
two microphones. Proceedings of ISMA 2007, Barcelona,
Spain, September 2007, International Symposium on Mu-
sical Acoustics.

[18] A. Lefebvre: La mesure de l’impédance acoustique du sax-
ophone alto. Diploma Thesis. École Polytechnique de
Montréal, 2006.

[19] T. Smyth, J. Abel: Convolutional synthesis of wind instru-
ments. Proceedings of the IEEE Workshop on Applica-
tions of Signal Processing to Audio and Acoustics (WAS-
PAA’07), New Paltz, New York, October 2007.

[20] J. O. Smith: Physical audio signal processing for virtual
musical instruments and audio effects. December 2008,
http://ccrma.stanford.edu/˜jos/pasp/.

[21] H. Levine, J. Schwinger: On the radiation of sound from an
unflanged circular pipe. Phys. Rev 73 (1948) 383–406.

1103

http://www.ingentaconnect.com/content/external-references?article=0001-4966(1995)97L.1950[aid=7221013]
http://www.ingentaconnect.com/content/external-references?article=0001-4966(1995)97L.1950[aid=7221013]
http://www.ingentaconnect.com/content/external-references?article=0001-4966(1983)73L.985[aid=6698428]
http://www.ingentaconnect.com/content/external-references?article=0001-4966(1983)73L.985[aid=6698428]
http://www.ingentaconnect.com/content/external-references?article=0957-0233(1997)8L.1112[aid=7506346]
http://www.ingentaconnect.com/content/external-references?article=0957-0233(1997)8L.1112[aid=7506346]
http://www.ingentaconnect.com/content/external-references?article=0001-4966(1986)79L.1129[aid=7058978]
http://www.ingentaconnect.com/content/external-references?article=0001-4966(1986)79L.1129[aid=7058978]
http://www.ingentaconnect.com/content/external-references?article=0001-4966(1987)81L.1152[aid=9008338]
http://www.ingentaconnect.com/content/external-references?article=0001-4966(1987)81L.1152[aid=9008338]
http://www.ingentaconnect.com/content/external-references?article=0001-4966()75L.58[aid=9008339]
http://www.ingentaconnect.com/content/external-references?article=0001-4966()75L.58[aid=9008339]
http://ccrma.stanford.edu/jos/pasp/

