
INTRODUCTION

Blowing into the mouthpiece of a saxophone allows the player to control the oscillation of the

reed by creating a pressure difference across its surface. When the reed oscillates, it creates an

alternating opening and closure to the bore, resulting in a periodic train of pressure pulses, or a

reed pulse sequence [1], that enters into the instrument bore.

The propagation of pressure waves in the cylindrical and predominantly conical sections of

the saxophone may be modeled in one dimension using a digital waveguide, with a bi-directional

delay line accounting for the acoustic propagation delay, and additional filter elements

accounting for losses distributed along the length of the instrument and at the boundaries.

Though open tone holes, used by the player to control sounding pitch, do complicate the issue,

they can still be modeled within a one-dimensional waveguide context by lumping their effects

at waveguide boundaries (i.e. with the bell).

For wind instruments, one of the primary ways in which a performer controls sound

production, aside from changing pitch using instrument tone holes/keys, is by changing the air

flow into the bore through alterations of blowing pressure and embouchure. In saxophone

playing, estimation of the signal generated by the reed, the reed pulse, by inverse filtering the

effects of the instrument can, therefore, yield a signal holding many of the more subtle playing

parameters.

In [2] a parametric waveguide model of a saxophone without tone holes is presented, where

the bore resonance may be set with a pure delay, and where boundary reflection and

transmission filters, obtained using a developed measurement and post processing technique,

are used to account for the acoustic behaviour of the bell. Here, an extension of this work, a

model of a saxophone with tone holes is developed from waveguide theory and acoustic

measurement, making it more suitable for inverse applications.

INVERSE FILTER

Ignoring the time-varying component in the reed/mouthpiece reflection, the saxophone

response YB to input pressure X = Z0U , where U is the volume flow and Z0 is the characteristic

wave impedance, may be expressed in the z domain as

YB(z)= X (z)H(z), (1)

where H(z) is the saxophone reed pulse transfer function. If wave propagation in the

instrument is modeled as a 1-D waveguide, with reflection at the mouthpiece RM , bell reflection

and transmission (along with lumped effects of open tone holes) functions RB and TB,

respectively, and propagation loss λ, transfer function H can be expressed in the z domain as

H(z)=
z−Lλ(z)TB(z)

1− z−2Lλ2(z)RM(z)RB(z)
, (2)

where z−L simulates the propagation delay in the purely conical section of the bore. The reed

pulse sequence X (z) may then be obtained by inverse filtering,

X (z)=G(z)YB(z) (3)

where the inverse filter is given by

G(z)=
1

H(z)
=

1− z−2Mλ2(z)RM(z)RB(z)

z−Mλ(z)TB(z)
. (4)

The inverse problem of estimating the reed pulse X , therefore, reduces to the problem of

estimating the filter G, so that it may be applied to the sound produced by the instrument YB, to



reveal a signal expected to hold more control information than one clouded by the effects of the

instrument.

The real difficulty arises in that the saxophone instrument transfer function H, and thus its

inverse G, is expected to change during performance. As the perform applies various fingerings

to change the instrument’s pitch, the changing configuration of open and closed tone holes will

produce different patterns of reflection and transmission along the bore length, effectively

changing the functions RB and TB, into which these effects are lumped.

Though one might use a more elaborate waveguide model, with scattering junctions to

model each of the instrument tone holes, the problem of knowing the state of each tone hole

(open or closed) from the saxophone signal YB still remains. Instead, therefore, an established

measurement and post processing technique is further developed to obtain the saxophone

transfer function H for every possible fingering used when controlling the B-flat tenor

saxophone. Statistical methods may be used on the recorded saxophone signal YB to determine

the most likely transfer function H, and then the corresponding inverse filter G may be applied.

MEASUREMENT AND ESTIMATION OF INSTRUMENT TRANSFER FUNCTION

The original measurement technique being employed here, fully described in [3], allows for

estimation of wind instrument waveguide elements from incremental measurements of a system

impulse response. The measurement system consists of a 2-meter long tube with speaker and

co-located microphone at one end for introducing a driving signal and simultaneously measuring

the response at the same position Y0(z) (the response being a measurement of pressure, but

corresponding strongly to the input impedance). A second microphone is placed outside the tube,

7 cm from the opposite end, on axis with the center of the tube. The system is first measured

with the opposite end closed and then with an appended device under test (DUT).

When the DUT is sufficiently short as compared to the measurement tube (e.g. wind

instrument bells), the measured system impulse response consists of a sequence of evenly

spaced echos, sufficiently spaced to allow for isolation without loss of information. As shown in

[3], windowed echos may be transformed, combined and manipulated algebraically to yield

estimates of DUT reflection and transmission frequency responses, for use in the context of a

waveguide model.

When the DUT is longer, however, such as when it is a complete saxophone with both bore

and bell, individual echos from the system impulse response are smeared in time and can no

longer be easily windowed. For this reason, the post-processing technique is modified for

estimating the DUT round-trip reflection and transmission functions from the entire signal of

system’s response, rather than from windowed echos.

Measurement System and Instrument Transfer Functions

The system created by appending a saxophone to the end of a 2-meter cylindrical tube (see

Figure 1) is illustrated in Figure 2, where z−M and λM(z) model the propagation delay and loss

in the measurement tube, terminated at one end by the reflection of the speaker ρ(z) and at the

other by a 2-port scattering junction, consisting of reflection functions R1(z) and R2(z), and

transmission functions T1 and T2(z), modelling the change of impedance occurring between the

cylindrical measurement tube and the predominantly conical saxophone. Following the junction

is the propagation delay and loss of the instrument, z−N and λN (z), respectively, terminated by

the bell reflection and transmission functions RB(z) and TB(z), which also lump the effects of

any open tones holes.

As shown in Appendix A of [2], the transfer function of the entire measurement system with

saxophone appended (corresponding to the signal flow diagram in Figure 2), the ratio of the
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FIGURE 1: The measurement system consisting of a 2-meter tube with a speaker and co-located microphone at one

end. The tube is measured first closed (top), then with a saxophone appended (bottom) to produce the measurement’s

impulse response under both terminating conditions.

Y−

0
(z)

λM(z) λN(z)

λN(z)

Y0(z)

z−M λM(z)

signal at interior mic

ρ(z)

z−M

T1(z)

R1(z)

T2(z)

R2(z)

z−N

z−N

YL(z)

RB(z)

TB(z)

signal at exterior mic
σ(z)

b

c

a

Y+

0
(z)

FIGURE 2: The system created by appending a saxophone to a long measurement tube. In addition to the pure

delays, functions λ model propagation loss, ρ is the reflection off the speaker, R1,2 and T1,2 the 2-port scattering

junction occurring between a cylinder and predominantly conical section of the saxophone, and RB and TB which

model the reflection and transmission effects of the bell and open tone holes.

measured signal Y0(z) to the input speaker transfer function σ(z), is given by

H0(z) =

Y0(z)

σ(z)

=

1+bM z−2M
+bN z−2N

+bM,N z−2(M+N)

1+aM z−2M
+aN z−2N

+aM,N z−2(M+N)
, (5)

where the feedforward coefficients are given by

bM = R1(z)λ2
M(z),

bN = −R2(z)RB(z)λ2
N (z),

bM,N = − [R1(z)R2(z)−T1(z)T2(z)]RB(z)λ2
M(z)λ2

N (z),

and the feedback coefficients are given by

aM = −ρ(z)R1(z)λ2
M(z),

aN = −R2(z)RB(z)λ2
N (z),

aM,N = ρ (R1(z)R2(z)−T1(z)T2(z))RB(z)λ2
M(z)λ2

N (z).

Similarly, the transfer function of the measurement system tapped at the position of the

microphone outside the bell of the appended saxophone is given by

HL(z) =

YL(z)

σ(z)

=

T1(z)TB(z)λM(z)λN (z)z−(M+N)

1+aM z−2M
+aN z−2N

+aM,N z−2(M+N)
, (6)

where the feedback coefficients are as defined in (6).



Conveniently, (5) and (6) can also be expressed in terms of the round-trip reflection of the

closed measurement tube,

Rcl(z)=λ2
M(z)z−2M , (7)

and the round-trip reflection and one-way transmission function of the appended instrument,

RI (z)= RB(z)λ2
N (z)z−2N , (8)

and

TI (z)= TB(z)λN z−N , (9)

respectively, yielding

H0(z)=
1+R1(z)Rcl(z)−R2(z)RI (z)− (R1(z)R2(z)−T1(z)T2(z))Rcl(z)RI (z)

1−ρ(z)R1(z)Rcl(z)−R2(z)RI (z)+ρ(z)(R1(z)R2(z)−T1(z)T2(z))Rcl(z)RI (z)
, (10)

and

HL(z)=
T1(z)λM(z)z−MTI (z)

1−ρ(z)R1(z)Rcl(z)−R2(z)RI (z)+ρ(z)(R1(z)R2(z)−T1(z)T2(z))Rcl(z)RI (z)
. (11)

This suggests that RI and TI can, in turn, be estimated from measurements of Rcl, H0, and HL,

and used to construct the instrument transfer function H given in (2), as well as it’s inverse G

given in (4), using

H(z)=
TI (z)

1−RM(z)RI (z)
, (12)

and

G(z)=
1−RM(z)RI (z)

TI (z)
, (13)

where RM(z) is the reflection off the mouthpiece.

Measurement Technique and Post Processing

The system is first measured without a DUT, the end of the 2-M tube opposite the speaker

being closed to ensure a perfect reflection. The model of this system can be seen as rigidly

terminating the diagram in Figure 2 before the scattering junction, yielding the simplified

transfer function

H0,cl(z)=
1+λ2

M
(z)z−2M

1−ρ(z)λ2
M

(z)z−2M
. (14)

The measured response is a sequence of arrivals sufficiently spaced that each may be windowed,

and their transforms Ln combined algebraically to yield estimates of the speaker transfer

function

σ̂(ω)= L1, (15)

and the speaker reflection function

ρ̂(ω)=
ζ(ω)

1−ζ(ω)
, where ζ=

L1L3

(L2)2
, (16)

where the use of ω is used to indicate measured data, distinguishing it from theoretical

expressions given as a function of z. With estimates of measurement system elements (15) and

(16), the frequency response of the closed measurement tube may be estimated by

Ĥ0,cl(ω)=
L(ω)

σ̂(ω)
, (17)



where L(ω) is the transform of entire measurement response of the closed tube, yielding the

estimate of the closed-tube round-trip reflection function

R̂cl(ω)=
Ĥ0,cl(ω)−1

1+ ρ̂(ω)Ĥ0,cl(ω)
, (18)

effectively providing estimates for the combined propagation delay and losses in the

measurement tube as described in (7).

A second measurement is then taken, with the DUT appended, yielding a signal at both

microphones, Y0(ω) and YL(ω). As in (17), the frequency response of the measurement system

may be estimated by dividing by the speaker transfer function σ̂(ω) (equivalent to deconvolving

in the time domain) to produce Ĥ0(ω)—an estimate of H0(z), and ĤL(ω)—an estimate of HL(z).

With estimates of the round-trip closed tube reflection function given by (18), it follows from (10)

and (11) that the instrument round-trip reflection and one-way transmission are estimated by

R̂I (ω)=

1+
1+ ρ̂(ω)Ĥ0(ω)

1− Ĥ0(ω)
R1(ω)R̂cl(ω)

R2 +
1+ ρ̂(ω)Ĥ0(ω)

1− Ĥ0(ω
[R1(ω)R2(ω)−T1(ω)T2(ω)] R̂cl(ω)

, (19)

and

T̂I (ω)=
ĤL(ω)

[

1− ρ̂(ω)R1(ω)R̂cl(ω)−R2(ω)RI (ω)+ ρ̂(ω)(R1(ω)R2(ω)−T1(ω)T2(ω))R̂cl(ω)RI (ω)
]

T1(ω)

√

R̂cl(ω)

,

(20)

where R1,2(ω) and T1,2(ω) may be obtained theoretically using system dimensions. Equation

(19) and (20) may then be used to complete H and G, as given in (12) and (13), respectively.

CONCLUSION AND FUTURE WORK

This process described herein is repeated for each of the possible playable tone hole

configurations on the B-flat tenor saxophone, with each fingering applied while the instrument

is appended to the measurement tube, and a measurement taken. When estimating the pulse

sequence X from the saxophone signal YB, a decision must be made regarding which of the

several inverse filters Gn should be applied. This is the subject of current work, involving pitch

detection, estimation of overblown notes, and calibration of model output to recorded signal.
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