
INTRODUCTION

The sound produced by the trombone may be seen as the coupling of the input pressure from

the lips (the product of the volume velocity output from a pressure-controlled valve and the

bore’s characteristic impedance) with the instrument mouthpiece, bore and bell. In this work,

the current status of trombone physical modelling, and the synthesis and/or measurement of

these components, is presented.

TROMBONE BORE AND BELL

Though wave propagation in many wind instruments bores may be modeled as a

one-dimensional waveguide, more attention is required when the bore departs from a purely

cylindrical or conical contour—such as at the mouthpiece (discussed in Section 4) and at the bell

(discussed herein).
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FIGURE 1: Waveguide model of a cylindrical tube with commuted propagation loss filters λ(z), open-end terminating

reflection and transmission filters RL(z) and TL(z) respectively, and a reflection filter R0(z) at the (effectively) closed

end termination corresponding to the position of the mouthpiece (a more accurate accounting of the mouthpiece is

developed in Section 4). The model is tapped at two observation points: the bore base, producing Y0(z), and the

instrument output, producing YL(z), in response to input pressure X (z).

The model depicted in Figure 1 has several filter elements describing the acoustic

characteristics of the system that may, or may not, change over time:

• The delay of M samples accounts for the acoustic propagation delay in the bore, the

value typically being set according to the bore’s effected length or the desired sounding

pitch.

• Propagation/wall losses λ(z) are well described theoretically [1, pp. 193-196], with a

parametric filter described in [2], allowing for real-time changes according to tube size and

length.

• The reflection and transmission at the bell, RL(z) and TL(z), respectively, may be

derived either from a computational model or from measurement (see Figure 2), with the

former emphasizing parametrization and ability to change the bell contour during

performance, and with the latter offering assumed greater accuracy. Because the

trombone bell is not expected to change during performance, and because it disassembles

easily from the trombone bore, its reflection and transmission functions may be estimated

using the measurement technique described in [3].

• The reflection at the mouthpiece position R0(z). As this is expected to change during

performance with the vibrating lips changing both the mouthpiece volume and the

opening to the bore, this waveguide element is not easily measured but better developed

within the context of coupling with the dynamic lip reed model and mouthpiece, discussed

in Section 3 and 4.
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FIGURE 2: Estimated and modeled bell reflection and transmission magnitudes as in [3].

LIP VALVE MODEL

When blowing into a trombone, air pressure from the lungs/mouth creates a pressure

difference across the surface of the lips, causing them to vibrate. The oscillation of vibrating lips

in a brass instrument is typically characterized as being “blown open” [4], and strongly coupled

to the bore, making playability (regular non-chaotic oscillation of lips), highly dependent on the

resonances of the bore and bell.

Here, the generalized pressure-controlled valve model, first introduced in [5], is used in its

“blown-open” configuration as illustrated in Figure 3. The displacement of the valve is given by

its angle θ from the vertical axis and the valve classification is determined by 1) its initial

position θ0 (its equilibrium position in the absence of flow), and 2) by the use of an optional

stop—a numerical limit placed to constrain the range of θ. Since the stop is placed at the center

vertical axis, θ = 0, and the initial equilibrium position of the valve θ0 is to the right of the stop,

θ0 > 0, an increased blowing pressure will cause the reed to blow open.
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FIGURE 3: The blown open configuration of the generalized valve model, showing geometric parameters λm, the

length of the valve that sees the mouth pressure, λd , the length of the valve that sees the valve’s downstream pressure,

and µ, the length of the valve that sees the flow. Changing these parameters will change the corresponding component

forces of the overall driving force F = Fm +Fb +FU .

As the reed angle θ changes during oscillation, the valve opening area A changes according

to

A(θ)= wHc(θ), (1)



where w is the width of the channel and Hc(θ) is the channel height, which may be specified by

a number of possible functions, such as

Hc(θ)= 1−cosθ, (2)

suitable for lip reeds.

The geometry of the valve may be further specified by setting the effective length of the reed

that sees the mouth pressure λm, the reed length that sees the bore pressure λb, and the reed

length that sees the flow, given by µ (see Figure 3). These variables have an audible effect on the

overall driving force acting on the reed, given by F in (3), and can be seen as offering finer

control of embouchure.

Once the valve is set into motion, the value for θ is determined by the second order

differential equation

m
d2θ(t)

dt2
+m2γ

dθ(t)

dt
+k(θ(t)−θ0)= F, (3)

where m is the effective mass of the reed, γ is the damping coefficient, k is the stiffness of the

reed, and F is the overall driving force acting on the reed, a function of the mouth and bore

pressure, and flow in contact with the reed. The frequency of vibration for this mode is given by

ωv =

√

k/m−γ2.

Discretization, equivalent to applying a bilinear transform, yields the transfer function in

the z domain
θ(z)

F(z)+kθ0

=

1+2z−1
+ z−2

a0 +a1z−1
+a2z−2

, (4)

and the corresponding difference equation

θ(n)= [Fk(n)+2Fk(n−1)+Fk(n−2)−a1θ(n−1)−a2θ(n−2)]/a0, (5)

where Fk(n)= F(n)+kθ0, and

a0 = mα2
+mgα+k,

a1 = −2(mα2
−k),

a2 = mα2
−mgα+k,

and α= 2/T, where T is the sampling period, and g = 2λ. Since pole frequencies are well below

half the sampling rate, there is no need for pre-warping.

The force driving the reed F is equal to the sum of the forces acting on the reed,

F = Fm +Fb +FU , where Fm = wλm pm is the force acting (in the positive θ direction) on the

surface area λmw, Fb =−wλb pb, is the force acting (in the negative θ direction) on the surface

area λbw, and FU is the force applied by the flow (which forces the reed open) given by

FU = sign(θ)wµ

(

pm −

ρ

2

(

U(t)

A(t)

)2)

. (6)

As can be seen by (6), the total force driving the reed is dependent on the valve classification,

since the sign of θ is determined by its limits.

The differential equation governing air flow through the valve, fully derived in [6], is given

by

dU(t)

dt
= (pm − pb)

A(t)

µρ
−

U(t)2

2µA(t)+U(t)T
. (7)

where pm is mouth pressure, pb is the bore pressure (see discussion in the following section),

A(t) is the cross sectional area of the valve channel, and µ is the length of reed that sees the



flow. Equation (7) is used to update the flow U every sample period (given by the inverse of the

sampling rate).

There are, therefore, three variables that evolve over time in response to an applied mouth

pressure pm: the displacement of the reed θ (determined using 5), the flow U , determined using

the update given by (7), and the pressure at the base of the bore pb, obtained from the

waveguide model as shown in Figure 1.

TABLE 1: Example parameters values for the lip reed.

Quantity Variable Value

Radius of exhaust a 8 mm

Valve width w 2.3 mm

Valve length λm =λb 23.2 mm

Valve mass m .3 g

Valve thickness ν 6 mm

Initial displacement θ0 0.01 mm

Mouthpiece volume V 5×10−6 m3

Mouthpiece choke length lc 48 cm

Mouthpiece choke radius ac 4.5 mm

MOUTHPIECE

Connecting the lip model to the instrument is done via the mouthpiece to account for the

resonance created by the mouthpiece’s cup volume and its backbore constriction.
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FIGURE 4: The system diagram for the mouthpiece model. The cup volume is represented by the capacitor, and the

attached narrow constriction is modeled as a series inertance L and dissipative element R, which accounting for wall

losses.

As shown in [1, 7] and others, the mouthpiece may be modeled by the equivalent electrical

circuit shown in Figure 4. The mouthpiece consists of a cup having a volume V , and presents an

acoustic compliance C given by

C =

V

ρc2
, (8)

where ρ is the air density and c is the velocity of sound in air. The cup is followed by a

constricted passage before entering into the wider trombone bore, with the constriction behaving

as a series inertance (inductance in electrical terms) given by

L =

ρlc

Sc

, (9)

where lc is the length and Sc is the cross-sectional area of the constriction. The dissipative

element R in series with this inertance represents viscous and thermal losses. Its value for the

mouthpiece has been obtained through experiment in [8].

Inserting a mouthpiece between the reed and bore models requires a new expression for the

volume flow entering the bore (it is no longer that coming directly from the lips), as well as a new



expression for the downstream pressure used when in the dynamic lip reed model (it is no longer

the bore base pressure). These quantities are termed U2(t) and p1(t), respectively, in Figure 4.

The mouthpiece model provides a volume flow U2(t) into the bore and a pressure p1(t) in the

mouthpiece, in response to a volume flow U1(t) entering the mouthpiece (generated by the lip

reed model) affixed to the instrument having a pressure of p2(t) at the bore base.

Taking the Laplace transform of the differential equations describing the mouthpiece model

in Figure 4 leads to the system’s frequency domain input-output matrix

[

U1(s)

p1(s)

]

=

[

s2LC+ sRC+1 sC

sL+R 1

][

U2(s)

p2(s)

]

, (10)

which may be rearranged and discretized to yield expressions for U2 and p1 in response to U1

and p2, given in the z-domain as

U2(z)=
U1(z)(1+2z−1

+ z−2)−Cαp2(z)(1− z−2)

am0 +am1z−1
+am2z−2

, (11)

where

am0 = LCα2
+RCα+1

am1 = −2(LCα2
−1)

am2 = LCα2
−RCα+1

and

p1(z)=
U2(z)(b0 +b1z−1)+ p2(z)(1+ z−1)

1+ z−1
, (12)

where

b0 = Lα+R and b1 =−Lα+R,

and α= 2/T, where T is the sampling period. The corresponding difference equations are given

by

U2(n) = [U1(n)+2U1(n−1)+U1(n−2)−

Cα (p2(n)− p2(n−2))−

a1U2(n−1)−a2U2(n−2)]/a0,

and

p1(n) = b0U2(n)+b1U2(n−1)+

p2(n)+ p2(n−1)− p1(n−1).

Again, as for the case of discretizing the valve displacement, no pre-warping is required. The

effects of the mouthpiece can be viewed by comparing the model’s output with and without a

mouthpiece, with all other parameters set as in Table 1.

CONCLUSIONS

This work assembles recent contributions to trombone synthesis. A measurement technique,

shown to produce accurate data for wind instrument bells, is combined with waveguide

synthesis, a generalized pressure-controlled valve model configured to act as a lip reed, and an

existing mouthpiece model to produce a quality real-time parametric trombone model.
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FIGURE 5: The magnitude spectrum of the model output showing the resonant effects of the mouthpiece.
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