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Abstract: In this work, an approach to jointly estimating the tone
hole configuration (fingering) and reed model parameters of a sax-
ophone is presented. The problem isn’t one of merely estimating
pitch as one applied fingering can be used to produce several different
pitches by bugling or overblowing. Nor can a fingering be estimated
solely by the spectral envelope of the produced sound (as it might
for estimation of vocal tract shape in speech) since one fingering
can produce markedly different spectral envelopes depending on the
player’s embouchure and control of the reed. The problem is therefore
addressed by jointly estimating both the reed (source) parameters and
the fingering (filter) of a saxophone model using convex optimization
and 1) a bank of filter frequency responses derived from measurement
of the saxophone configured with all possible fingerings and 2) sample
recordings of notes produced using all possible fingerings, played with
different overblowing, dynamics and timbre. The saxophone model
couples one of several possible frequency response pairs (corresponding
to the applied fingering), and a quasi-static reed model generating input
pressure at the mouthpiece, with control parameters being blowing
pressure and reed stiffness. Applied fingering and reed parameters are
estimated for a given recording by formalizing a minimization problem,
where the cost function is the error between the recording and the
synthesized sound produced by the model having incremental param-
eter values for blowing pressure and reed stiffness. The minimization
problem is nonlinear and not differentiable and is made solvable using
convex optimization. The performance of the fingering identification is
evaluated with better accuracy than previous reported value.

1. INTRODUCTION

The problem of inverse modeling acoustic instruments is well
addressed in Computer Music research, as solutions can lead to
estimation of control parameters, and ultimately, provide informa-
tion about a player’s action during performance of the instrument.
As human-computer interaction, and mapping between control and
synthesis parameters, are important aspects of sound synthesis
and live electronic music performance, the applications of inverse
modeling abound. This work stems from [1], and builds upon
previous work on modeling and system identification of reed-based
wind instruments [2, 3, 4]. The ultimate aim is to extend the
musical possibilities of the saxophone by estimating the player’s
control parameters, in real time, without hindering performance or
technique. Though the work presented here does not run in real
time, it provides valuable insights and offline results that could likey
inform a real-time solution.
In this work, the focus is on the joint estimation of saxophone con-
trol parameters, that is, the tonehole configuration or fingering of the
saxophone, as well as blowing pressure and stiffness (embouchure)
of the reed. In [3], a pair of saxophone frequency responses,
tapped at the mouthpiece and bell of a pure tenor without toneholes,
are derrived from measurement. Later in [4], the measurement
is extended and applied to the saxophone configured with every
useable fingering, each measurement yielding a filter pair serving
as the saxophone model with that applied fingering. This work
was used to develop a real-time rule-based fingering identification
system that operates on the spectral magnitude of the saxophone
sound and estimated instrument frequency response pair comprising
the saxophone model [1]. However, because the spectral magnitude
of the saxophone’s produced sound is substantially influenced by
the player’s control of the reed in addition to the fingering applied to

the instrument, an alternative approach was suggested and partially
explored in [1] whereby parameters of the reed model are jointly
estimated with the applied fingering of the saxophone. Initial results
in [1] suggest possible improved accuracy (though at the expense of
computation), thus substantiating the work presented herein.
The influence of reed pulse on the resulting saxophone sound is
similar to, and even more significant than, that of the glottal pulse
in speech. A similar joint-estimation setup may be found in [5]
where both the glottal waves and the all-pole filter coefficients of
a source-filter speech model are jointly estimated using convex
optimization. The coupling of the reed and saxophone differs from
the source-filter model used in [5] in that vibration of the less massy
saxophone reed (a source) is more effected by the internal state
of traveling waves in the bore, creating more significant feedback
between bore and reed than is typically seen between vocal tract and
glottus. Nevertheless, in both systems, the spectrum of the produced
sound is influenced by both source and filter, thus making the
joint estimation of source and filter model parameters a reasonable
approach. The main reason of forming and solving a convex
optimization problem is that difficulties such as the aforementioned
feedback dependency between source and filter signals, as well
as the nonlinearity of the reed model, are made tractable and can
be solved using off-shelf toolkits. Specifically, this parameter
estimation problem is suited to convex optimization because: 1)
the convolution operations between reed source and bore filters
are linear and are thus naturally convex functions, 2) the non-
linear reed model and the signal feedback from the bore model
can both be specified separately as different constraints in the
optimization, and 3) since the estimation problem remains convex,
so does the problem remain tractable. Tractability comes from
three properties of convex optimization: 1) local optimum is global
optimum; 2) feasibility of the constrained optimization problem
can be determined unambiguously; 3) precise stopping criteria
are available using duality, since the dual problem of the primal
problem provides a lower bound for the primal problem [FIX: still
unclear; be more specific]. [6, 7].
In [8], convex optimization techniques are used to inverse model
a clarinet, with the aim of estimating reed parameters from syn-
thesized clarinet sound. Their work has the advantage of knowing
input pressure and volume flow signals at the mouthpiece when for-
mulating the optimization problem. Here, saxophone reed control
parameters, and the resulting volume flow and input pressure they
generate, are optimization variables that are solved against sound
recordings of an actual saxophone. The optimization is formed
by minimizing the error between recorded saxophone sounds and
sounds produces by the reed-saxophone model. The synthesis
follows the convolutional synthesis method proposed in [9]. To
evaluate the proposed methods, the precision of the estimated
fingering is evaluated over a dataset consisting of fingering transfer
functions (transfer functions derived from measurement of the sax-
ophone with different tonehole configurations applied) and several
example recordings of the saxophone played (by a professional
saxophonist) with the corresponding fingering.
In Section 2, the details of the inverse modeling, including measure-
ment, estimation and pre-processing of instrument responses, para-
metric reed model, optimization setup are provided. Experiments
and results are described in Section 4 and conclusions and future
works are discussed in Section 5 [FIX: once paper is finished, make
sure this description is accurate].
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Figure 1: System diagram of convolutional synthesis

2. SAXOPHONE REED AND BORE MODELS

The reed model used here is the quasi-static model describe in [10,
11, 2] among others, in which the reed vibrates in response to a
pressure difference,

4 p(t) = pM(t)− yM(t), (1)

across its surface. That is, introduction of blowing pressure pM(t)
into the mouthpiece causes a pressure increase as compared to the
valves’s downstream (bore base) pressure yM(t), causing the reed to
vibrate with a displacement given by

x(t) =
4p(t)

k
, (2)

where k is the stiffness of the reed. As the reed vibrates, it creates
an aperture to the bore with time-varying cross-sectional area

A(t;x) = λ (h0− x(t)), (3)

where λ is the effective jet width of the reed and h0 is the reed rest
opening. This results in a volume flow through the reed channel
given by

U(t) = A(t;x)

√
24 p(t)

ρ
(4)

for air density ρ , and ultimately the pressure input into the bore,

pr(t) = Z0U(t), (5)

where Z0 = ρc/(πa2) is the characteristic impedance of waves
propagating in a bore with radius a. As shown in Figure 1, the
saxophone signal produced at the bell yB(t) may be expressed in
the time domain as the input pressure signal generated by the reed
(5) convolved with the impulse response hB(t)—the inverse of the
frequency response HB(ω) excited at the mouthpiece and tapped at
the bell:

yB(t) = (pr ∗hB)(t). (6)

The signal at the mouthpiece yM(t) (base of the bore), on which
the calculation of the reed model is dependent, is, in turn, given by
the convolution of input pressure pr(t) with the impulse response
hM(t)—the inverse of the frequency response HM(ω) excited and
tapped at the mouthpiece, yielding

yM(t) = (pr ∗hM)(t). (7)

It is useful to note that the time-domain convolution given in (6) can
be expressed in the frequency domain as

YB(ω) = Xs(ω)HB(ω), (8)

where source Xs(ω) is the spectrum of the input pressure given in
(5). Since applying filter

G(ω) =
1

HB(ω)
(9)

to YB(ω) yields Xs(ω), estimation of the source is often often
referred to as an inverse modeling problem. Estimation of the
fingering, and corresponding HM,B(ω), is thus a prerequisite to
tackling the inverse problem of source estimation.
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Figure 2: Magnitude responses at the bell for fingerings covering
the lower register of a B-flat tenor saxophone.

3. JOINT REED-BORE PARAMETER ESTIMATION

Estimation of the fingering amounts to determining which of several
possible frequency response pairs HM,B(ω), obtained apriori by
measurement of the saxophone with all useable fingerings applied
[1], is most likely to have produced the sound produced at the bell
YB(ω). As the frequency response pairs HM,B(ω) are estimated
from measurement, they tend to be noisy below 100 Hz and above
5000 Hz. A denoising filter, linear in phase (with known delay), is
thus applied to the inverse transformation of HM,B(ω) to produce
more suitable impulse responses hM,B(t) used in the subsequent
discusstion. A subset of de-noised HB(ω) magnitudes may be seen
in Figure 2 for the lower register fingerings of the B-flat tenor
saxophone.
Several recordings were made of a professional saxophonist playing
a variety of notes using each tonehole configuration (including
bugling/overblowing), yielding a sizeable dataset holding multiple
examples of yB(t) for each possible fingering. The process of
estimating reed and saxophone model parameters is done by first
using convex optimization to find optimal reed parameters k and
pM for all instances of hB,M(t), then selecting which hB,M is most
likely to have produced the target yB(t) (fingering estimation), and
finally using corresponding values of k and pM as the reed model
estimates.

3.1. Convex Optimization
Formalizing as a convex optimization yields optimal values of k,
pm, and U(t) for a given impulse response pair hB,M(t) correspond-
ing to a particular fingering:

minimize
pm,k,U(t)

f0(pM ,k,U(t))

subject to (4),
pM ,k ≥ 0,

A(t;x),U(t)≥ 0, t = 1, . . . ,T,

(10)

with the objective function

f0(pm,k,U(t)) = ‖yB(t)− (pr ∗hB)(t)‖2
2

= ‖yB(t)− (Z0U ∗hB)(t)‖2
2, (11)
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Parameter Notation Value

Air Density ρ 1.2 kg
m3

Sound Velocity c 340 m
s

Bore Radius a 0.014m
Characteristic Impedance Z0

ρc
πa2

Effective Jet Width λ 0.0055m
Reed Rest Opening h0 0.06m

Table 1: Constants for parametric reed model

being the squared Euclidean distance between a recording at the
bell yB(t) (having unknown fingering) and the signal synthesized
according to (7) and (6), constrained by (4) and optimized over pM ,
k and U(t). The objective function here differs from the minimized
negative cosine similarity used in [1] as the squared Euclidean
distance avoids the need of a normalization factor to account for
difference is units between model and target. Changing f0 from
negative cosine similarity to (11) improved the prediction accuracy
from 60% to 93%.
For the experiments described herein, the optimization problem is
evaluated over a frame size of T = 2048 samples, during which time
pM and k are assumed constant. The optimization problem may
be translated into a conic programming problem then solved via
general optimization toolkits (MOSEK [12] is used here). The other
model constants used for the optimization are listed in Table 1. The
detail setup of the conic programming is provided in appendix A.

3.2. Fingering Estimation
The optimization (10) for a given target yB(t) is done over all 27
possible hB,M(t) pairs corresponding to all possible fingerings. The
synthesized signal that is most similar to target yB(t) is then selected
among these 27 possibilities, and the final parameter estimation is
the hBM (t) pair (fingering) and the corresponding optimal values of
pM and k used to generate the selected synthesis.
Though it’s reasonable to assume that the convex optimization (10)
yielding satisfactory optimized parameters {pM ,k,U(t)} would
also give an optimal hM,B pair, it was found that the objective
function f0 was not an accurate indicator of the fingering, likely
due to the energy term of (pr ∗ hB)(t) in (??) causing a selection
bias toward a lower energy synthesis [FIX: still not clear... is this
what you mean?] To remedy, the cosine similarity

g0(pm,k,U(t)) =
yB

T (pr ∗hB)(t)
‖yB(t)‖‖(pr ∗hB)(t)‖

t = 1, . . . ,T (12)

which provides a similarity measure based more on the shape
of the waveform, is used to estimate the fingering. It should
be noted that, after f0 is expanded and the two squared terms
yB(t)2 and (pr ∗ hB)(t)2, corresponding to the energy of yB(t) and
the synthesized signal, respectively, are discarded, the remaining
−yB

T (pr ∗hB)(t) is equal to the negative numerator of g0, which is
minimized (maximized as g0).

4. RESULTS

Figure 3 illustrates a frame size of a target recording yB(t) (black),
a middle F note played with low B-flat fingering (thus overblown
the fifth), along with three synthesis attempts (blue, green and
red) using (7) and (6) with three sets of optimized variables
{pM ,k,U(t)} and impulse responses hB(t) and hM(t) corresponding
to 1) the correct low B-flat fingering (blue), 2) the feasible but
incorrect low F fingering (green), and 3) the infeasible and incorrect
low B fingering. When the impulse responses corresponding to
the correct fingering are used, the optimization yields parameter
values for {pM ,k,U(t)} that produce a synthesized signal having
reasonable likeness to target yB(t) (see Figure 3, blue). When
impulse responses corresponding to incorrect fingerings are used
however, the optimization produces parameters values yielding
synthesis more dissimilar from yB(t) than the correct one, and
infeasible one (red) is farther than feasible one (green).
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Figure 3: Synthesis of (6) using optimized variables pM , k and U(t)
and impulse responses corresponding to correct fingering low B-
flat (top) and incorrect fingering C-sharp (bottom), for target sound
middle B-flat with low B-flat fingering.

aaaaaaaaa
used

tested
Low B[ Low F

Low B[ 0.6185 0.334
Low F 0.5398 0.544

aaaaaaaaa
used

tested
Low D Low A

Low D 0.7958 0.75
Low A 0.77 0.78

Table 2: Fingering used in target versus fingerings tested in
optimization for yB(t) having pitch middle F (top) and middle A
(bottom).

As a proof of concept, the confusion matrix for two examples of
binary classification are shown in Tab. 2, one for target sound having
pitch middle F (top) and one having pitch middle A (bottom).
For each pitch, two target recordings yB(t) are considered, each
produced using one of two possible fingerings. The results of
the cosine similarity between a yB(t) and synthesis using impulse
responses corresponding to two possible fingerings (g0) is shown,
with the higher value, in bold, being the estimated fingering.

4.1. Saxophone Fingering Identification
To further investigate the saxophone fingering identification prob-
lem, an experiment is conducted on a larger subset of the recorded
saxophone notes covering pitches producible from low B[, B, C,
C] and D fingering, with results shown in Tab. 3. For each
fingering there are three recordings each having a different pitch
(15 recordings total). In this experiment, the correct fingering
was estimated from five possible candidates 93% of the time,
substantially above a baseline of 20% for a random guessing. An
experiment on the full dataset, 57 recordings against all 27 possible
fingerings, is conducted as well later with an accuracy rate of
19.3%, which is better than a random baseline of approximately
4%, but definitely not ready for practical use [FIX: can we omit this
last part? It sounds bad in that it devalues the work...].

5. CONCLUSION AND FUTURE WORK

In this work, convex optimization techniques are deployed to
identify the fingering used for producing a recorded saxophone
sound. The optimization is formed based on a coupled saxophone
model consists of a parametric reed model and estimated impulse
responses of the saxophone. The accuracy of the identification is
assessed, and the performance (93%) on the subset of the dataset
in comparison to that of the full dataset (19.3%) indicates that
the proposed formalization indeed has the potential to be further
developed and investigated to have practical uses. Also the accuracy
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H
HHHH

HHHH

Pitch,
fingering

Test
against low

B[
low
B

low
C

low
C]

low
D

mid B[, low B[ 0.8 0.7 0.66 0.67 0.61
mid F, low B[ 0.74 0.47 0.61 0.66 0.65
high B[, low B[ 0.62 0.57 0.60 0.71 0.75
mid B, low B 0.77 0.84 0.75 0.61 0.69
mid F], low B 0.77 0.86 0.60 0.67 0.67
high B, low B 0.64 0.85 0.73 0.7 0.66
mid C, low C 0.65 0.77 0.82 0.78 0.63
mid G, low C 0.7 0.59 0.88 0.63 0.68
high C, low C 0.67 0.72 0.83 0.72 0.69
mid C], low C] 0.67 0.61 0.70 0.76 0.74
mid G], low C] 0.70 0.75 0.62 0.84 0.71
high C], low C] 0.62 0.63 0.65 0.72 0.69
mid D, low D 0.67 0.69 0.66 0.70 0.76
mid A, low D 0.6 0.65 0.68 0.75 0.8
high D, low D 0.66 0.7 0.7 0.75 0.77

Table 3: Prediction of fingerings using cosine similarity from
between target pitch with corresponding fingering and synthesis
(Eqn. (6)) using impulse responses for low B[, B, C, C] and
D fingering. Gray boxes indicate correct fingerings (fingering
used in target). Bold fonts indicate identified fingerings based on
maximum cosine similarity. Slanted fonts are used if the runner-up
in identification is the correct fingering.

on the subset of the dataset (93%) is significantly improved from
previous reported result (60%) [1] by using squared euclidean
distance as objective function.
For future works, the first step is to further boiled down the
optimization formalization into small building blocks to have better
understanding on how parameters interact with each and to improve
computational efficiency towards real-time application. Also, more
saxophone recordings for each fingering should be gathered to
have a better validation on how the formalization could generalize.
The other interesting part that was not explored in this work
is the investigation of player’s mouthpiece control, mainly input
mouthpiece pressure and reed stiffness. The challenge facing such
investigation is that when comparing yB(t) to the synthesis by
Eqn. (6), there is a scaling problem since yB(t) is represented
as real numbers between −1 ∼ 1 while the synthesis outputs
waveforms in units of pressure (Pascals). Due to such scaling
disparity, the value of the estimated {pM ,k,U(t)} does not reflect
real world measurements. To tackle such problem, the studies
done in [11] about the characteristics of single-reed instrument
could be leveraged to choose an appropriate scaling factor into the
optimization setup. Optimization in the frequency domain should
also be considered since fitting the waveform shapes in time domain
is an overkill when what matters is the spectral characteristics.

A. CONIC PROGRAMMING SETUP

To transform the optimization problem in Eqn. 10 into convex
optimization form, slack variables and conic programming tech-
niques are introduced as described here. An n-dimensional rotated
quadratic cone is convex and defined as

Qn
r = {x ∈ Rn|2x1x2 ≥ x2

3 + · · ·+ x2
n,x1,x2 ≥ 0}. (13)

First the objective function f0 is rewritten as a rotated quadratic
cone and the optimization given by (10) is rewritten accordingly
with other inequalities staying the same (omitted for brevity)[FIX]
and a slack variable γ introduced as

minimize γ

subject to (
1
2
,γ,4y) ∈ Q2+T

r , (14)

4 y = yB(t)− (pr ∗hB)(t). (15)

Equation (4) also has to be rewritten as two rotated quadratic cones.
Let 4p = pM(t)− yM(t), k′ = k2 and introduce slack variables η ,
α , β and ζ , the equality constraint (4) is transformed to

U(t)−λ

√
2
ρ
(h0α−β )−η = 0, (16)

(4p,
1
2
,α) ∈ Q2+T

r , (17)

(ζ ,β ,4p)(t),(
1
8
4 p,k′,ζ )(t) ∈ Q3

r , t = 1, . . . ,T. (18)

Finally the full convex optimization is written as

minimize γ +η

subject to (14),(15),(16),(17),(18),

pM ,k′,γ,η ≥ 0,

A(t;x),U(t)≥ 0, t = 1, . . . ,T

with k recovered by calculating square root of the optimized k′.
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