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ABSTRACT
One dimensional digital waveguides are widely used to model travelling pressure waves along
wind instrument bores. These models must also account for frequency-dependent losses occurring
along the bore walls, and at boundaries. This is accomplished by incorporating waveguide filter
elements, which are based on the widely accepted theory describing these losses. A measurement
technique is demonstrated that allows the effects of each waveguide element to be isolated and
observed for simple cylindrical and conical tube structures, as well as their combination. This
measurement system yields data that closely matches the theory and provides confidence that it
may be extended to accurately measure musical instrument bores, where bore shapes are usually
considerably less simple, and thus more difficult to account for theoretically. This work paves the
way for further application to clarinet and trumpet bores.

INTRODUCTION
We have developed a measurement system for simple acoustic tube structures, a continuation of
the work presented at [1], that allows observation of waveguide model components. The measure-
ments closely correspond to digital waveguide theory, allowing validation of the system before using
it on more complex tube structures such as the bores of musical instruments.

DIGITAL WAVEGUIDE THEORY
It is well known that the right and left travelling pressure waves in both cylindrical and conical
tubes can be modeled using a digital waveguide, or bi-directional delay line. In practice, is is also
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Figure 1: A waveguide section.

necessary to account for any losses that occur during propagation. The effects of viscous drag
and thermal conduction along the bore walls, lead to an attenuation in the propagating waves [2]
approximated by

α(ω) ≈ 2 × 10−5
√

ω/a, (1)

leading to a round trip attenuation for a tube of length L given by

λ2(ω) = e−2α(ω)L. (2)



In conical structures diverging to the right, there’s an additional loss of 1/r in the right travelling wave
due to spherical spreading, where r is the distance from the observation point to the cone apex.
For left travelling waves, however, there is a reconcentration of the the pressure wave proportional
to r.

Any change of wave impedance in the waves, which may take the form of a termination or
connection to another waveguide section, will require additional filtering to account for reflection
and possibly transmission.
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Figure 2: A change of impedance in a waveguide section may occur as a termination (closed with
perfect reflection and open with reflection with corresponding transmission) or scattering junction
when connected to another section.

A change in cross sectional area of a tube will change the wave impedance, resulting in a
reflection with frequency-dependent losses following the expression

R(ω) =
Z2/Z1 − 1

Z2/Z∗

1 + 1
, (3)

where Z2 and Z1 are the new and previous wave impedances, respectively, which for plane pressure
waves in cylindrical tubes, and spherical pressure waves in conical tubes, are given by

Zy =
ρc

S
, and Zn =

ρc

S

jω

jω + c/x
, (4)

respectively [3]. A special case of a change in cross section is when the wave reaches an open
end, and subsequently, open air. In this case, the complex terminating impedance Z2(ω) = ZL(ω),
is a fairly complicated function of frequency, which is given by Levine and Schwinger in terms of
Bessel and Sturve functions functions [4]. Here we approximate the reflection and transmission
functions using first order low-pass and hi-pass filters. An example waveguide model of a cylinder
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Figure 3: Example waveguide models of the open cylicone.

with a connected cone incorporates all of these waveguide elements, including transmission filters
T (ω), which are the complement of the reflection filters R(ω), as seen in Figure 3.



MEASUREMENT TECHNIQUE
It’s well known that inputting an impulse into an LTI system, yields the impulse response of the
system. There are problems, however, in using an impulse as the test signal to obtain an accurate
measurement of the response. Since there must be sufficient energy in the test signal to excite the
system above the noise floor, the amplitude of the impulse would have to be quite high, and would
likely result in distortion. We therefore use a sinusoid that is swept over a frequency trajectory, in
this case exponential, effectively smearing the energy in a loud impulse over a period of time. Doing
so, drives the system with a large amount of energy without distortion.

To isolate each of the waveguide model elements seen in Figure 3, the test signal was input
through a speaker at one end of each of four specially developed tube structures (see Figure 4). A
microphone at the same end as the speaker recorded the response.

1. Cylinder, closed end. A 2 meter long cylinder is closed at one end to ensure a perfect
reflection, allowing transfer functions to be estimated for the speaker output σ(ω), the speaker
reflection ρ(ω), and the wall loss filters λ(ω). The arrival responses Ln for this measurement
may be seen in Figure 7.

2. Cylinder, open end. Opening the cylinder allows us to estimate the transfer function of the
reflection at the open end of a cylinder, Rop(ω), and compare the result with the theory given
by Levine and Schwinger.

3. Cylicone, closed end. The addition of a conical flare with a spherical termination (to ensure a
perfect reflection) to the above cylindrical tube allows the effects of reflection and transmission
at the junction to be observed .

4. Cylicone, open end. Opening the conical end allows us to observe the effects of the reflec-
tion at the end of an open cone.
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Figure 4: Four simple tube structures: cylinder (closed and open) and cylicone (closed and open).

MEASURED RESPONSES
Given the arrival responses for a closed cylinder, Ln, we are able to estimate the transfer function
of the reflection off the speaker (which has a prominent hi-pass characteristic as they are designed
to be resonant at low frequencies). We begin by considering the first arrival, which is the output of
the speaker measured at the mic, and consists solely of the speaker transfer function:

L1 = σ(ω). (5)

The following arrival, L2, consists of the sum of left and right traveling pressure waves at the mi-
crophone position: the speaker transfer function after having travelled, round-trip, the length of the
tube, given by σ(ω)λ2(ω), and the speaker transfer function with round trip losses after reflecting
off the speaker, σ(ω)λ2(ω)ρ(ω). The second arrival may therefore be expressed as their sum, and
is given by

L2 = σ(ω)λ2(ω)(1 + ρ(ω)). (6)



Each subsequent arrival for the closed cylinder consists of the previous arrival, with round-trip wall
losses of λ2(ω). The third arrival is therefore given by

L3 = σ(ω)λ4(ω)(1 + ρ(ω)). (7)

These three responses are sufficient for estimating the speaker reflection transfer function. The
speaker reflection ρ(ω) is isolated and an intermediate variable is defined:

ζ(ω) =
L1L3

(L2)2
=

ρ(ω)

1 + ρ(ω)
, (8)

yielding an estimate for the speaker transfer function given by

ρ̂(ω) =
ζ(ω)

1 − ζ(ω)
. (9)

With the estimate of the speaker transfer function, we may also use two of the arrival responses to
estimate the round-trip wall loss transfer function, given by

λ̂2(ω) =
L3

ρ̂(ω)L2
. (10)

Opening up the end of tube allows us to obtain arrival responses Yn, shown in Figure 7 b, from
which the open-end reflection transfer function Rop may be isolated. As with the closed cylinder, the
initial response of this measurement is merely the response of the speaker to an impulse, yielding
the speaker transfer function, Y1 = σ(ω). The second arrival, Y2, is similar to L2 but also includes
the effects of the open-end reflection, and is given by

Y2 = σ(ω)λ2(ω)Rop(ω)(1 + ρ(ω)). (11)

Subsequent arrival responses include the effects of additional round-trip wall losses and open-end
reflections.

Given the second arrival for the closed tube, L2, and the second arrival for the open tube, we
are able to estimate the reflection from an open end through a deconvolution:

R̂op(ω) =
Y2

L2
. (12)

In results not presented here, estimated wall losses and the open tube reflection function, were
seen to match that theoretically predicted to within a fraction of a dB across the audio band.

Attaching a conical flare to the cylindrical tube, and terminating with a spherical cap to ensure
a perfect reflection, allows us to observe the effects of the reflection and transmission filters the
junction. In this case, we must look at the individual subarrivals within the second arrival A2 of
Figure 7. The first subarrival A(2,1) has a response similar to Y2, except it includes a reflection
off the junction Ry (as seen from the cylinder), instead of at the open-end. Anything that is not
reflected at the junction is transmitted through to the conical section with losses described by the
transfer function Ty, and is subject to round-trip conical wall losses given by λ2

n(ω), before being
transmitted back through the junction to the cylinder with losses described by Tn(ω). The second
subarrival may therefore be described by the expression

A(2,2) = σ(ω)λ2
y(ω)λ2

n(ω)Ty(ω)Tn(ω)(1 + ρ(ω)). (13)

Though it is difficult to actually estimate filters corresponding to Ry and Rn using the measurement
data, as there is insufficient decay between subarrivals to obtain clean estimates, we may model
each subarrival following the theory used to obtain 13, observe each subarrival independently, and
then see how the combined result compares to the whole of the measured closed-cone arrival A2.
The arrival responses for the open cylicone, from which we may observe the effects of a conical
open-end reflection Rn, are treated in the same way as for the closed (though their subarrivals are
even more blurred and difficult to observe). The results for both are seen in Figures 5 and 6, each
showing a very close match between model and measurement.
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Figure 5: Measured and modeled closed cone second arrival (corresponding to A(2,2)).
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Figure 6: Measured and modeled open cone second arrival (corresponding to N(2,2)).

CONCLUSIONS
An approach for measuring waveguide model element transfer functions is presented using a
speaker to drive an acoustic tube, with a co-located microphone recording the response. The
tube responses, each with a different termination, were used to estimate wall losses, and various
reflection and transmission filters with excellent agreement to theoretical prediction. As a result, it is
thought that the reflection function of a wind instrument can be accurately estimated by comparing
the response of a rigidly-terminated tube to one that is terminated with an instrument.
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Figure 7: Arrival responses are shown with their corresponding transfer functions. The transfer
function in A2,1 and A2,2 are functions of frequency, with ω omitted in the interest of saving space.
The response A2,1 shows a low-pass characteristic expected of a junction reflection, while A2,1

shows a hi-pass characteristic expected of two transmissions through the junction.


