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ABSTRACT

In this work we estimate the volume flowpulses through
a clarinet reed from recorded clarinet signal. The idea is
similar to extracting glottal pulse sequences from recorded
speech, however since the clarinet reed has little mass and
generates significant reflection, the source-filter model used
in speech processing invalid. Here, the clarinet is modeled
as a pressure-controlled valve coupled to a bi-directional
waveguide, with the output pressure seen as a linear time in-
variant transformation of reed volume flow. By noting that
pressure waves will make two round trips from the mouth-
piece to the bell and back for each reed pulse, a predictor is
developed which operates on the recorded data in order to
estimate the round-trip attenuation experienced by pressure
waves in the instrument. Combining these losses with the
direct measurements of the bell reflection function, a filter
is developed which inverts the implied waveguide to reveal
the reed volume flow pulses.

1. INTRODUCTION

Interactive virtual musical instruments require an input de-
vice that will allow for real-time, ergonomic and intuitive
control of synthesis parameters. Many such devices fall
from use before sufficient expertise can be gained to make
them expressive and artistic tools. The result is that musi-
cians are generally more virtuosic on acoustic instruments,
likely in part because of the difference in time devoted to
practice, but also, in part, because of the difference in re-
sponse to user input, and haptic and auditory feedback. As
an alternative therefore, researchers have explored the possi-
bility of extracting control parameters directly from musical
performance, where the performer may use an instrument
with which s/he is sufficiently familiar to control some other
virtual instrument.

For wind instruments, one of the primary ways in which
a performer controls sound production, aside from changing
pitch using instrument keys, is by changing the flow into
the bore through alterations of blowing pressure and em-
bouchure. In this work therefore, we present a technique
by which the flow, orreed pulse, may be obtained from a
recording of a clarinet, using acoustic measurements, and
inverse filtering. Once the flow signal is isolated, it becomes

a mapping problem to extract control parameters for a syn-
thesis model.

The approach taken here is similar to that of estimating
a glottal pulse sequence from recorded speech. This is com-
monly done via LPC, however Lu and Smith [1] presented
a method where the formant filter and the glottal source are
separately estimated. As the clarinet reed has a small mass
and generates a significant reflection, the source-filter model
used in speech processing is not valid here. Sterling et al. [2]
attempt to extract clarinet control parameters, but could not
invert their clarinet transfer function and thus used the am-
plitude envelope of the recorded sound to estimate blowing
pressure. In van Walstijn et al. [4], a procedure is described
for estimating parameters from separated traveling pressure
waves, measured inside the instrument bore. In this work,
we develop an expression for the transfer function from reed
volume flow pulses to the sound produced by the clarinet.
An expression for the inverse filter is given in terms of clar-
inet transmission, reflection and propagation losses, which
are estimated from offline acoustic measurements and real-
time processing of the recorded clarinet sound.

2. CLARINET MODEL AND PARAMETERS
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Figure 1. Waveguide model of a cylindrical tube with com-
muted propagation loss filters,λ(ω), at upper and lower
delay line observation points, an open-end reflection filter
Rop(ω) and corresponding transmission filterT (ω), and a
reed (mouthpiece) reflection filterM(ω).

Blowing into the mouthpiece of a clarinet allows the
player to control the reed’s oscillation by creating a pres-
sure difference across its surface. When the reed oscillates,
it creates an alternating opening and closure to the bore, al-
lowing airflow entry during the open phase and cutting it
off during the closed phase. The effect is a periodic train
of flow pulses, or thereed pulse, into the bore. The oscilla-



tion of the reed, and thus the periodicity of the reed pulse, is
also dependent on the pressure traveling to and fro along the
length of the bore, a pressure which is subject to frequency-
dependent losses according to the bore’s length, size, shape
and termination.

The signal flow during performance may be seen follow-
ing the classical waveguide structure shown in Figure 1. The
initial position of the reed is open. An input mouth pressure
of pm creates a flow through the reed channelU(t) after
which the reed closes (though not necessarily completely).
The flow is multiplied by the characteristic impedance of the
boreZ0 to create a positive input pressure pulse to the bore,
which travels toward the bell along the bore lengthL while
being subjected to various propagation lossesλ(ω). Once
the pressure reaches the bell, a part is inverted with transfer
functionRop and sent propagating back to the mouthpiece,
and a part is transmitted out the bell with transfer function
T (ω). The reflected pressure is inverted, creating a negative
pressure at the mouthpiece and further closing the reed. The
negative pressure is reflected off the reed with transfer func-
tion M(ω) and is returned down the bore to the bell, again
being subjected to propagation and reflection loss. The now
positive pressure returned to the mouthpiece is sufficient to
open the reed and allow for another airflow pulse. The re-
sult is that pressure waves will make two round trips from
the mouthpiece to the bell and back for each reed pulse, as
seen in Figure 2 (made lossless for improved visibility).

reed pulses (top) and pressure (bottom) in a lossless tube

Figure 2. Pressure waves (bottom) will make two round
trips from the mouthpiece to the bell and back for each flow
reed pulse (top). The flow is therefore periodic, with a pe-
riod corresponding to the bore pressure and thus also the
recorded clarinet signal.

3. OBTAINING THE FLOW RESPONSE BY
INVERSE FILTERING

Ignoring the time-varying component in the reed/mouthpiece
reflection, the clarinet response to volume flow is given by

C(ω) = z−τλ(ω)T (ω)[1 +

z−2τλ2(ω)M(ω)R(ω) +

z−4τλ4(ω)M2(ω)R2(ω) + . . .]U(ω)

=
z−τλ(ω)T (ω)

1 − z−2τλ2(ω)M(ω)R(ω)
U(ω)

= H(ω)U(ω), (1)

whereH(ω) is the clarinet reed pulse transfer function. The
flow response is then obtained by inverse filtering, that is

U(ω) = C(ω)/H(ω),

=
1 − z−2τλ2(ω)M(ω)R(ω)

z−τλ(ω)T (ω)
C(ω)

= G(ω)C(ω), (2)

where the inverse filter is given by

G(ω) =
1 − z−2τλ2(ω)M(ω)R(ω)

z−τλ(ω)T (ω)
. (3)

The inverse filter therefore leaves us several unknowns:
the reflection filterRop(ω), the transmission filterT (ω), the
reed reflectionM(ω), and the propagation lossesλ(ω). If
we knowRop(ω), we may inferT (ω), since they are com-
plementary. In the following,M(ω) is lumped with the un-
known propagation loss, however in results not presented
here it was seen to be 0.9 and reasonably independent of
frequency and the reed opening area. To form the inverse
filter in (3) therefore, we measure the clarinet bell reflec-
tion Rop directly, as described in Section 4, and the prod-
uctM(ω)λ(ω) is estimated directly from a recorded clarinet
signal, as described in Section 5.

4. MEASURING THE REFLECTION FILTER

We begin by measuring a cylinder terminated at one end by
the speaker and closed at the other (termination is with a
piece of Lucite assumed to be perfectly reflective).
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Figure 3. Measurement system, showing two tube struc-
tures, one with a closed end (top) and the other with an open
(end). Each tube is terminated at the opposite end with a
speaker providing a driving signal, along with a co-located
microphone recording the response.

The responses from this measurement may be seen in
Figure 4, with each echoLn being comprised of the follow-
ing transfer functions:

L1 = σ(ω) (4)

L2 = σ(ω)λ2(ω)(1 + ρ(ω)) (5)

L3 = σ(ω)λ4(ω)ρ(ω)(1 + ρ(ω)) (6)

whereσ(ω) is the speaker transfer function,ρ(ω) is the re-
flection off the speaker, andλ2(ω) is the round-trip wall-
losses for a cylinder.
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Figure 4. Measured impulse response for the closed (top)
and open (bottom) cylinder showing individual arrivals. The
open-end transfer function (or that of an appended bell) de-
scribed byRop(ω)), may be isolated by comparison with the
corresponding closed-end arrival. For example,R̂op(ω) =
Y2/L2.

For a rigidly terminated tube, the reflection at the end
opposite the speaker isR(ω) = 1. Changing this termi-
nation, either by simply opening the tube, or by appending
some type of bell (as in Figure 5), will introduce a reflection
in the response. The arrival responses for an open cylinder
are seen in Figure 4 and given by

Y1 = σ(ω) (7)

Y2 = σ(ω)λ2(ω)Rop(ω)(1 + ρ(ω)) (8)

Y3 = σ(ω)λ4(ω)ρ(ω)R2

op
(ω)(1 + ρ(ω)), (9)

differing from the closed tube arrivals (4-6) in thatY2 and
Y3 include the effect of the reflectionRop(ω), which may be
estimated using the ratio of the second arrivals of the open
and closed tube,

R̂op(ω) =
Y2

L2

. (10)

Figure 5. Adapted measurement system, showing a clarinet
bell appended to the measurement tube, allowing for mea-
surement of the clarinet bell reflection filter.

Appending the bell of a clarinet to the tube (as shown
in Figure 5) will similarly allow us to obtain its reflection
function using (10). The reflection function and its associ-
ated impulse response are shown in Figure 6.
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Figure 6. The clarinet bell reflection filter.

5. INFERRING PROPAGATION LOSSES

With a direct measurement of the reflection filterRop(ω)
and corresponding transmissionT (ω), as well as an approx-
imation for the reed reflectionM(ω) = .9, we are only in
need of the propagation lossesλ(ω) to form the inverse filter
in (3).

In the presence of a periodic outputC̃(ω), the copies of
the clarinet response to prior reed pulses stack on top of each
other, i.e., they are time aligned yielding

C̃(ω) = z−τλ(ω)T (ω)

[

1 + z−2τλ2(ω)R(ω)M(ω)

1 − λ4(ω)R2(ω)M2(ω)

]

Ũ(ω).

(11)
Recall that for every reed pulse, there are two round trips

from the mouthpiece to the bell and back again yielding a



periodicity in the flow that corresponds to that of the pres-
sure (see Figure 2), with the pressure showing two distinct
halves: one where the pulse is positive and one where it is
negative.

The ‘1’ term in the numerator of (11) show contributions
from mostly the first part of the period (initiated by the pos-
itive pulse), and the termλ2(ω)R(ω)M(ω) shows mostly
contributions from the second half of the period (initiatedby
the negative pulse). Taking their spectral ratio would yield
an estimate ofλ(ω)2R(ω)M(ω).

The difficulty is that the first and second parts of the
period do not contain disjoint contributions. They can, how-
ever, be separated by first considering their sum,

σ̃(ω) = λ(ω)T (ω)

[

1 + λ(ω)2R(ω)M(ω)

1 − λ4(ω)R2(ω)M2(ω)

]

Ũ(ω)),

(12)
which creates an artificial ‘echo’ that cancels a portion of
the feedback and yields

σ̃(ω) =
λ(ω)T (ω)Ũ(ω)

1 − λ2(ω)R(ω)M(ω)
. (13)

Consider next, the difference between the first and second
parts of the period:

δ̃(ω) =
λ(ω)T (ω)Ũ(ω)

1 + λ2(ω)R(ω)M(ω)
. (14)

The unknown round-trip transfer function can be found by
examining the ratio of the sum and difference responses,

ρ =
σ̃(ω)

δ̃(ω)
=

[

1 + λ(ω)2R(ω)M(ω)

1 − λ(ω)2R(ω)M(ω)

]

, (15)

and an estimate ofη = λ(ω)2R(ω)M(ω) is given by

η̂ = (ρ − 1)/(ρ + 1). (16)

The estimator̂η reduces to the spectral ratio of the signal
during first and second halves of the period. Every com-
ponent of the output signal during the second half of the
period has been filtered byλ(ω)2R(ω)M(ω) compared to
what they were during the first half of the period. A pitch
detection algorithm must be used to find the period, and half
periods may be found at zero crossings. Figure 7 shows an
example of a clarinet signal and estimated reed pulse se-
quence.

6. CONCLUSION

In this work a method is presented for observing thereed
pulses, from a clarinet recording during real-time perfor-
mance. An inverse filter is formed to obtain the flow in re-
sponse to a clarinet signal, but can be completed only by ob-
taining expressions for the bell reflection and the bore prop-
agation losses. The reflection filter is obtained directly from
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Figure 7. A clarinet signal (bottom) and estimated reed
pulses (top).

a described measurement technique and the propagation loss
is obtained by developing an estimator which assumes a pe-
riodic flow, with the period consisting of two distinct halves
corresponding to positive and negative pulses in one period
of the pressure signal. The estimator considers the ratio of
the sum of the first and second halves to the difference of
the first and second halves of the clarinet signal, yielding an
expression which can be used, with knowledge of the bell
reflection, to obtain the propagation losses and complete the
inverse filter used to extract the reed pulses.
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