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ABSTRACT

A reed, or more generally, a pressure-controlled valve,
is the primary resonator for many wind instruments and
vocal systems. In physical modeling synthesis, the method
used for simulating the reed typically depends on whether
an additional upstream or downstream pressure causes the
corresponding side of the valve to open or close further.

In this work, a generalized and configurable model of a
pressure controlled valve is presented, allowing the user to
design a reed simply by setting the model parameters. The
parameters are continuously variable, and may be config-
ured to produce blown closed models (like woodwinds or
reed-pipes), blown open models (as in simple lip-reeds,
the human larynx, harmonicas and harmoniums) and sym-
metric “swinging door” models. This generalized virtual
reed affords the musician the ability to produce a wide va-
riety of sounds which would otherwise only be obtained
with several reed instruments.

1. INTRODUCTION

There are several examples of musical instruments (e.g.
woodwind and brass) and vocal systems (e.g. the hu-
man vocal tract and the avian syrinx) where air pressure
from the lungs, or other source, controls the oscillation
of a valve by changing the pressure across the valve’s
reed or membrane to create a constriction through which
air flows. Sound sources of this kind are referred to as
pressure-controlled valves and they have been simulated
in various ways to synthesize virtual musical instruments.

The similarities and differences among various valve
geometries lend themselves quite nicely to a single gener-
alized parametric model—one that is completely config-
urable as determined by the needs of the musician. The
generalized model of the valve presented here, and the
acoustic tube to which it is connected, is implemented us-
ing numerical methods and waveguide synthesis, and runs
in the real-time programming environmentPd [1]. We be-
gin by describing the three classes of valves and then dis-
cuss how the valve dynamics are generalized to produce
a single parametric model. Finally, the musical effects
produced by modifying different parameters and chang-
ing valve configurations are examined.

2. THE PRESSURE-CONTROLLED VALVE

Pressure-controlled valves are classified according to the
effect of an additional pressure applied to the upstream or
downstream side of the valve [3, 4]. Fletcher uses the cou-
plet (σ1, σ2) to describe the valve behaviour, withσi =
+1 signifying an opening of the valve, andσi = −1 sig-
nifying a closing of the valve, in response to an upstream
(i = 1) or downstream (i = 2) pressure increase.
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Figure 1. Simplified models of common configurations of
the pressure-controlled valve as seen in [4]. 1)(−, +) de-
fines a valve that is blown closed, and is typical of wood-
wind instruments. 2)(+,−) defines a valve that is blown
open, and is exemplified by brass and other lip-reed in-
struments as well as the human larynx. 3)(+, +) is the
principle configuration of the avian syrinx, where an over-
pressure applied to either side of the valve will cause it to
open.

This construction is very useful when evaluating the
force driving a mode of the vibrating valve. Consider
Fletcher’s generalized double reed in a blown open con-
figuration, as shown in Figure 2. In this case, surfaceS1

sees an input or upstream pressurep1, surfaceS2 sees the
downstream pressurep2 after flow separation, and surface
S3 sees the flow at the interior of the valve channel and the
resulting Bernoulli pressure. With these areas and the cor-
responding geometric couplet defined, the motion of the
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Figure 2. Geometry of ablown-open pressure-controlled
valve showing effective areasS1, S2, S3 [3].

valve openingx(t) is governed by

m
d2x

dt2
+2mγ

dx

dt
+k(x−x0) = σ1p1(S1+S3)+σ2p2S2,

(1)
whereγ is the damping coefficient,x0 the equilibrium po-
sition of the valve opening in the absence of flow,k the
valve stiffness, andm the reed mass [3, 4]. The motion
equation (1) intentionally does not take into account the
force applied by flow for the purpose of simplification.

3. THE GENERALIZED PARAMETRIC MODEL

The generalized parametric model of a pressure controlled
valve described below can be configured to operate in any
number of ways, allowing the musician the benefit of pro-
ducing a range of musical effects.

We see from (1) that the behavior of the valve is gov-
erned by two features: its dynamics (i.e., how it responds
to applied forces), and the manner in which upstream and
downstream pressures exert force on the valve. As we will
see in§3.2, flow through the valve depends on the valve
opening area as a function of time. To develop a gener-
alized pressure controlled valve, therefore, it is desirable
to independently control the valve dynamics, the effect of
upstream and downstream forces, and the valve area as a
function of the valve state.

3.1. Valve dynamics

Figure 3 illustrates one mode of oscillation for each of
three possible generalized valve configurations. The dis-
placement of the valve is given by its angleθ from the
vertical axis. The configuration of the valve is determined
in part by the initial position of the valveθ0 (its equilib-
rium position in the absence of flow), and in part by the
use of astop—a numerical limit placed at the center ver-
tical axis which prevents the valve from swinging beyond
the pointθ = 0 and into the shaded region of Figure 3 b)
and c).

If no stop is placed, as shown in Figure 3 a) the valve
is free to swing across this center boundary and the model
provides a symmetric(+, +) type of model, that is, an ad-
ditional pressure from either side of the valve will cause
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Figure 3. Configurations of the generalized parametric
valve, whereH(θ) is a function which determines the
height of the valve channel. In configuration a), no stop is
specified and the valve swings freely producing a(+, +)
symmetric “swinging-door” model. In configurations b)
and c), a stop prevents the valve from swinging beyond
θ = 0 and into the shaded regions, creating a(−, +)
blown closed model and(+,−) blown open model re-
spectively.

it to open further. If a stop is placed in the channel, the
configuration is further determined by the initial equilib-
rium position of the valveθ0. If the valve’s initial position
is to the left of the center (θ0 < 0), a pressure increase
from the air source will cause the valve to close further
and a pressure increase from the bore will cause it to open
further. This creates a(−, +) blown closed model similar
to woodwind instruments and the valve shown in Figure
1, b). Contrarily, if the valve’s initial position is to the
right of the stop point (θ0 > 0), a pressure increase from
the air source will cause the valve to open further and a
pressure increase from the bore will cause it to close fur-
ther. This creates a(+,−) blown open model similar to
lip-reeds and shown in Figure 1, c).

Once the valve is set into motion, the value forθ is de-
termined, for small displacements, by the familiar second
order differential equation

m
d2θ

dt2
+ m2γ

dθ

dt
+ k(θ − θ0) = F, (2)

wherek is the stiffness of the reed,γ andm are defined
as above, andF is the overall driving force acting on the
reed. The fundamental frequency of valve vibration (reso-
nance frequency) is given byωv =

√

k/m. In the gener-
alized model, the displacement of the valve is determined



by first considering the forceF in (2).
Let us assume the valve reed is hinged as in Figure 3.

Let λm be the effective length of the valve which sees the
mouth pressurepm, λb be the length of the valve which
sees the bore pressurepb, andµ the length of the valve that
sees the flow. There is a force in the positiveθ direction,
on the surface areaλmw, given by

Fm = wλmpm, (3)

wherew is the width of the valve channel. There is also a
force on the bore side of the reed away from the jet, given
by

Fb = −wλbpb, (4)

forcing the valve in the negativeθ direction whenpb > 0.
The force applied by the flow (which also forces the reed
open) is found by integrating the pressure along the flow
and is given by

FU = sign(θ)wµ

(

pm −
ρ

2

(

U

A

)2
)

, (5)

whereA is the cross-sectional area of the valve channel
given bywH , H is the opening of the valve (see Figure
3) calculated fromθ and the geometry of the valve, and
sign(θ) determines the direction of the force: ifθ > 0, the
force acts in the positiveθ direction and ifθ < 0 the force
acts in the negativeθ direction. The forceF acting on the
valve is then obtained by summing (3), (4) and (5) and is
given by

F = wλmpm +sign(θ)wλbpb−wµ

(

pm −
ρ

2

(

U

A

)2
)

.

(6)
To specify the valve classification, the musician need

only specify the equilibrium positionθ0 and whether the
valve should be limited byθ = 0 (for the blown open
and closed cases). It may also be desirable to create a stop
point that is valid only under certain conditions: overblow-
ing, for example, could cause the valve to beat against the
stop with enough force to push it past the limit, effectively
blowing the valve into a new configuration. This and other
variations could be implemented by making the reed stiff-
nessk a function of valve angleθ.

3.2. Volume flow

Many valve models (and particularly clarinet reeds) are
implemented using a lookup table which matches the value
for flow with the pressure drop across the valve [2, 4].
This is known as the quasi-static, Bernoulli-flow model
because the value of flowU is established by relating the
pressure difference and the volume flow under constant-
flow conditions. Though this implementation has pro-
duced satisfactory sound at low computational cost, it is
not suitable for a generalized model as it is not physically
accurate and does not provide access to certain desired pa-
rameter values.

The dynamic model, which replaces the static table
with a differential equation for volume flow, was presented
in [5, 6] and permitted the development of thefeathered
reed—a smoothing of the volume flow cutoff between open
and closed valve states. Within the context of the gener-
alized valve, the dynamic model now also has the added
benefit of allowing for valve modifications in real-time.

The flow is in contact with the surface of the reed for a
distanceµ, beyond which it is assumed that the flow sepa-
rates and forms a jet. For this reason, we are interested in
the differential flowbefore that point. The force on a thin
slicedy along the valve channel is given by

F = A(y; θ)∆p(y). (7)

whereA(y; θ) is the cross section area of the valve chan-
nel at a pointy along the channel for the generalized reed
at an angleθ, and where∆p(y) is the pressure drop across
this section of the reed. The force is applied to a volume
of air A(y; θ)dy having mass

ρA(y; θ)dy, (8)

whereρ is the air density. Newton’s second law—force is
the product of mass and acceleration—can then be applied
to (7) and (8) to obtain

A(y; θ)∆p(y) = ρA(y; θ)dy
dv

dt
, (9)

where acceleration is given by the time derivative of the
particle velocity,dv/dt, and is assumed constant over this
sectiondy of the reed. We can then substitute particle
velocity for volume flow scaled by area and integrate over
the length of the channel to obtain

p(0) − p(µ) = ρ
dU

dt

∫ y=µ

y=0

dy/A(y; θ), (10)

wherey = 0 is the channel entrance andy = µ is the
point of flow separation. Bernoulli’s equation is used to
calculate the pressure entering the valve,p0, and then the
pressure at flow separationp(µ) is replaced with the bore
pressurepb to obtain the differential equation governing
volume flow

dU

dt
= (pm − pb)

A(x)

µρ
−

U2

2µA(θ)
, (11)

where the flow is assumed to be in contact with the reed
for a distance ofµ.

The singularity in (11) as the valve opening approaches
zero makes clear the need for afeathered valve, a method
fully developed for the avian syrinx [5] and the clarinet
reed [6] using the small area solution fordU(t)/dt. The
update governing air flow is given by

U(t+1) = U(t)+(pm−pb)
A(t)T

µρ
−

U(t)2T

2µA(t) + U(t)T
,

(12)
whereA(t) is the valve channel area at timet, andT is
the sampling interval.



Figure 4. Pd object showing input parameters.

It is clear that the valve channel area is critical to the
volume flow and the sound of the instrument. As the reed
angleθ changes, the valve opening area changes accord-
ing to the changing valve channel height,A(θ) = wH(θ).
As illustrated in Figure 3, any number of channel area
functions are possible by choice of channel profile, and,
in particular, by the channel height functionH(θ). Set-
ting H(θ) = | sin θ| for example, approximates the chan-
nel area of a clarinet reed, whereas the functionH(θ) =
1 − cos θ approximates that of a lip reed.

4. EXAMPLE AND CONCLUSIONS

The model was implemented inPd [1] and takes argu-
ments as shown in Figure 4. Figure 5 shows spectro-
grams of the sound produced in response to a burst of
mouth pressure for blown-closed (top) and blown-open
(bottom) valves attached to identical bores. In both cases,
the reed and resonant frequencies,fr andfb respectively,
were quite different withfr � fb as is typically the case.
As expected, in the blown closed case the reed frequency
fr has very little effect on the sounding frequency which,
as seen by the spectrogram, is closer to the frequency of
the borefb. Also as anticipated, in the blown open case
the sounding frequency is closer to the reed resonant fre-
quencyfr.

The generalized pressure controlled valve presented here
is capable of expressing any of the three valve classes—
blown open, blown closed, and a symmetric model—by
changing the model parameters. The classes have sig-
nificantly different pitch and timbre characteristics, made
even more so by changing certain of the model’s geomet-
ric quantities. This model contributes a very useful tool
for creating, and blending among, a variety of instrument
sounds under real time control.
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