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ABSTRACT

In previous work, the authors presented a generalized para-
metric model of a pressure controlled valve, allowing the
user to design a continuum of reed configurations, includ-
ing “blown open”, “blown closed” and the “swinging door”.
Though the generalized reed model behaved as expected,
the quality of the produced sound was somewhat limited,
likely due to the dependence of reed oscillation on the
connected instrument bore and bell.

In this work we further explore the sound production
of the generalized reed by incorporating reflection filters
measured from actual musical instruments. The measure-
ment technique is shown to produce results closely match-
ing theoretical expectation for cylindrical and conical tubes,
and is applied to the clarinet and trumpet. Measurements
are incorporated into a waveguide model using the gener-
alized reed.

1. INTRODUCTION

A physics-based synthesis of a reed instrument typically
involves simulating the dynamics of a pressure-controlled
valve, and coupling the result to a model of the propagat-
ing pressure waves travelling along the instrument bore.
In many cases the bore is modelled using digital waveg-
uide synthesis [1], that is, the right and left travelling pres-
sure waves are modelled using a bi-directional delay line
and filter elements accounting for losses occurring during
propagation and at boundaries.

In previous work, the authors presented a model for
the reed element, and in particular a generalized paramet-
ric model of a pressure controlled valve, allowing the user
to design a continuum of reed configurations, including
“blown open”, “blown closed” and the “swinging door”
(reviewed in Section 2). Though the generalized reed model
behaved as expected, the quality of the produced sound
was somewhat limited, likely due to the simplicity of the
connecting tube employed. Since the nature of the tube
and bell, and the resulting pressure fluctuations at the mouthiece,
influence the opening and closing of the reed, an improved
synthesis is expected by using more accurate bore and bell
models.

The oscillation of a “blown open” reed, such as one
might find in a trumpet or other lip-reed instrument, is

strongly coupled to the bore, making playability highly
dependent on the bore resonances. Any trumpet player
will agree that initiating, and sustaining, oscillations of the
lips when blowing into a cylindrical tube is considerably
different than when blowing into the bore of a trumpet,
with its flared opening serving to ”shift” resonant peaks.
Coupling a simulation of a “blown open” reed to a model
of a cylindrical bore would present similar difficulties,
and in particular, would not yield the quality of sound
one might expect from a trumpet, even if oscillation were
achieved. A parametric change in the configuration of the
generalized reed model would, therefore, also likely re-
quire a change in the model of the bore.

In an approach similar to that described in [2], in this
work we further explore the sound production of the gen-
eralized reed by incorporating measured reflection filters
corresponding to different musical instrument bores. The
measurement technique was originally demonstrated by
the authors using simple cylindrical and conical tubes (and
their combination), and and produced results closely match-
ing theory [3].

2. THE GENERALIZED REED MODEL

In reed instruments, as well as many vocal systems, air
pressure from a source such as the lungs controls the os-
cillation of a valve by creating a difference between its up-
stream (incoming) and downstream (outgoing) pressure.
This primary resonator, known as a pressure-controlled
valve, is classified according to its behaviour in the pres-
ence of additional upstream or downstream pressure [4].
If an increase in blowing pressure causes the valve to close
further, and a bore pressure increase causes the valve to
open further, the reed is said to beblown closed, the clas-
sification of most woodwind instruments. If a blowing
pressure increase causes the valve to open further, and an
increase in bore pressure causes the valve to close, the
reed isblown open, the typical configuration of brass (lip
reed) instruments, and the human voice. Aswinging door
or “transverse” reed, typically found in the avian syrinx,
is one where a pressure increase from either side of the
valve will cause it to open further.

The generalized reed model was first introduced in [5],
providing a configurable model of a pressure controlled



valve, allowing the user to design their own virtual reed,
simply by setting model parameters. The parameters are
continuously variable, and may be configured to produce
any of the three aforementioned valve classifications, as
well as setting the valve geometry. Figure 1 illustrates one
mode of oscillation for each of the three possible classifi-
cations, with the displacement of the valve being given by
its angleθ from the vertical axis.
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Figure 1. The valve types, showing four evolving model
parameters: input mouth pressurepm, bore pressurepb,
volume flowU , and valve displacementtheta (which is
constrained differently for each type).

The valve classification is determined in part by its ini-
tial positionθ0 (its equilibrium position in the absence of
flow), and in part by the use of astop—a numerical limit
placed at the center vertical axis that prevents the valve
from swinging beyond the pointθ = 0 (see Figure 1 b and
c). If no stop is placed, as shown in Figure 1 a), the valve
is free to swing across this center boundary and the model
provides a symmetric “swinging” model, that is, an addi-
tional pressure from either side of the valve will cause it
to open further. If a stop is placed in the channel, the con-
figuration is further determined by the initial equilibrium
position of the valveθ0: an initial position to the left of
the stop, atθ0 < 0, will cause the reed toblow closed,
while an initial position to the right of the stop,θ0 > 0,
will cause the reed toblow open. A clarinet classification,
for example, is implemented withθ0 < 0 plus a stop.

The geometry of the valve may be further specified by
setting the effective length of the reed that sees the mouth
pressureλm, the reed length that sees the bore pressure
λb, and the reed length that sees the flow, given byµ.
These variables have an audible effect on the overall driv-
ing force acting on the reed, given byF in (1), and can be
seen as offering finer control of embouchure.

Once the valve is set into motion, the value forθ is
determined by the second order differential equation

m
d2θ

dt2
+ m2γ

dθ

dt
+ k(θ − θ0) = F, (1)

wherem is the effective mass of the reed,γ is the damp-
ing coefficient,k is the stiffness of the reed, andF is the
overall driving force acting on the reed, a function of the
mouth and bore pressure, and flow in contact with the
reed. The frequency of vibration for this mode is given
by ωv =

√

k/m.

Discretization using the trapezoidal rule for numerical

integration, yields the transfer function

X(z)

F (z) + kx0

=
1 + 2z−1 + z−2

a0 + a1z−1 + a2z−2
, (2)

and the corresponding difference equation

x(n) = [Fk(n) + 2Fk(n − 1) + Fk(n − 2) −

a1x(n − 1) − a2x(n − 2)]/a0,

(3)

whereFk(n) = F (n) − kx0, and

a0 = mc2 + mgc + k,

a1 = −2(mc2
− k),

a2 = mc2
− mgc + k.

This discretization is equivalent to applying a bilinear trans-
form. Since pole frequencies are well below the Nyquist
limit (half the sampling rate), they is no need for pre-
warping.

The force driving the reedF is equal to the sum of the
forces acting on the reed,F = Fm+Fb+FU , whereFm =
wλmpm is the force acting (in the positiveθ direction) on
the surface areaλmw, Fb = −wλbpb, is the force acting
(in the negativeθ direction) on the surface areaλbw, and
FU is the force applied by the flow (which forces the reed
open) given by

FU = sign(θ)wµ

(

pm −

ρ

2

(

U

A

)2
)

. (4)

As can be seen by (4), the total force driving the reed is
dependent on the valve classification, since the sign ofθ
is determined by its limits.

The differential equation governing air flow through
the valve, fully derived in [6], is given by

dU

dt
= (pm − pb)

A(t0)

µρ
−

U(t0)
2

2µA(t0) + U(t0)T
. (5)

wherepm is mouth pressure,pb is the bore pressure (see
discussion in the following section),A(t) is the cross sec-
tional area of the valve channel, andµ is the length of
reed that sees the flow. Equation (5) is used to update the
flow U every sampled period (given by the inverse of the
sampling rate).

There are, therefore, three variables that evolve over
time in response to an applied pressurepm: the displace-
ment of the reedθ (determined using 3), the flowU , de-
termined using the update given by (5), and the pressure
at the base of the borepb, obtained using waveguide syn-
thesis incorporating a low-latency convolution [7] of the
measured reflection and/or loss functions.

3. SYNTHESIS OF THE BORE

3.1. Waveguide Synthesis of Instrument Bore

In the original presentation of the generalized reed, the
pressure at the base of the borepb is determined using



waveguide synthesis incorporating theoretical reflection
filters at the open end boundary. The model, as seen in
Figure 2, consists of a bi-directional delay line to account
for the pure delay of the bore (a function of either the bore
length or the desired frequency), as well as digital filters
to account for losses occurring during propagation, and at
boundary reflections.
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Figure 2. A waveguide model of a cylindrical tube with
commuted wall loss filters,λ(ω), at upper and lower de-
lay line observation points, a reflection filterφ(ω) and a
transmission filterµ(ω).

Because oscillation of the reed is dependent on the shape
of the bore, and its associated resonances, this waveguide
model alone was insufficient for obtaining the various pos-
sible sounds of which a generalized reed should be ca-
pable. We therefore incorporate the results of acoustic
tube measurements to obtain reflection (and correspond-
ing transmission) filters more appropriate to a chosen valve
classification.

3.2. Response Measurements of Instrument Bores

In work originally presented at [3], the authors presented a
measurement technique for obtaining very accurate mea-
surements of simple acoustic tubes (cylindrical and con-
ical), and which allowed for observation, and estimation,
of each of the waveguide elements seen in Figure 2. To
isolate each waveguide model element, a system was de-
veloped using a series of four tube structures (see Figure
3) and then extended to include both clarinet and trumpet
bores (see Figure 4) to obtain their reflection functions.

1. Cylinder—closed end.A 2 meter long cylinder is
closed at one end to ensure a perfect reflection, al-
lowing for calibration to the speaker output, speaker
reflection, and propagation (wall) loss filter transfer
functions. This measurement can later be decon-
volved from one with an appended instrument to
obtain the reflection function for that instrument.

2. Cylinder—open end. Opening the cylinder allows
for estimation of the transfer function for the reflec-
tion at the open end of a cylinder (σ(ω) in Figure 2).
If a tube structure (such as an instrument) is ap-
pended to the cylinder,σ(ω) represents instead the
reflection function of that strucutre.

3. Cylinder+Cone (Cylicone)—closed end.The ad-
dition of a conical flare with a spherical termination
(to ensure a perfect reflection of spherical waves)
allows for estimation of reflection and transmission
filter transfer functions at the junction.

4. Cylinder+Cone (Cylicone)—open end.Opening
the conical end allows for estimation of the reflec-
tion function the cone.
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cylinder, speaker−closed

cylinder, speaker−open

2 meters

cylicone, speaker−closed

cylicone, speaker−open

Figure 3. Four tube structures incorporating open and
closed boundaries and cylindrical and conical sections.

Results are best presented for the cylinder and cyli-
cone cases, as these structures can be easily modeled us-
ing theoretically-based waveguide synthesis techniques,
and thus provides a good basis for comparison between
model and measurement (Figure 5). The measurements
yield data (from which waveguide model elements are es-
timated) that is shown to be almost identical to the output
of the theoretically-based waveguide model (see Figure
5), allowing the technique to be confidently expanded to
include the reflection functions of actual instruments.

Figure 4 shows a clarinet and trumpet bore connected
to the end of the calibration tube. Appending an instru-
ment is much like appending the cone, and using exist-
ing responses of the closed cylindrical tube, will allow
for estimation of the response of an impulse travelling the
length of the bore, reflecting at its open flared end, and
then returning to the junction with the cylinder. The re-
flection function magnitudes for the clarinet bell and the

Figure 4. The clarinet and trumpet reflection functions are
measured by appending them to the calibration cylinder.
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Figure 5. Measured impulse responses (bottom of each
figure), and those produced based on theoretical consider-
ation (top of each figure), show excellent agreement.

trumpet mouthpiece are shown in Figure 6, the former
having the expected low-pass characteristic. In addition to
measuring bore and instrument reflection functions, other
characteristics may be measured. For instance, Figure??
shows a measured trumpet mouthpiece reflection function
which may be used to determine the mouthpiece input
impedance.

The reflection function is incorporated into the waveg-
uide model by convolving the right traveling wave with
the reflection impulse response to produce the left, in-
coming, pressure wave traveling toward the reed. The
required convolution may be computed using frequency-
domain techniques, and to ensure the same level of in-
teractive control as the waveguide model, a low-latency
implementation [7] may be used.

4. CONCLUSION

We have proposed a generalized reed with considerable
potential flexibility, in that it can be configured to model
any of three different valve types. In connecting it to a
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Figure 6. The reflection function magnitudes for the clar-
inet bell (lp = lowpass) and the trumpet mouthpiece (in-
cluding mouthpiece) (hp = highpass).

simple generic tube model however, done originally for
the purpose of keeping the conditions consistent while
comparing the behaviors of different reed classifications,
we found that the quality of the produced sound was some-
what limited. By having more appropriate variation in the
bore and bell, obtained using measured reflection func-
tions of actual instruments, we can improve upon the cou-
pling with the reed and the overall produced sound.
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