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ABSTRACT

Audio signal processing applications of first and second-order
allpass filters are discussed. Stability issues can arise when
second-order allpass filters are made time varying. This is
demonstrated analytically and experimentally. A solution,
in the form of a power-preserving matrix formulation of the
second-order allpass is presented. This filter is studied with
applications to feedback systems and generative synthesis.

1. INTRODUCTION

Allpass filters are well-known signal processing tools, com-
monly employed in audio synthesis and processing for their
frequency-dependent phase shift and unity magnitude response.
They have been used widely in applications such as reverber-
ation [1], physical modeling [2], spectral delay filters [3], and
modulation effects [4, 5, 6].

Problems can arise however, when traditional, time-invariant
filter structures are made time-varying. Filters that are stable
with a given set of coefficients can quickly experience rapid
growth in output power when those coefficients are allowed
to vary over time—even if only moving to another set of “sta-
ble” coefficients. This presents challenges for their use in cer-
tain contexts, and indeed for their application to the feedback
networks and generative audio systems discussed herein.

In this paper, “generative audio system” is a term used by
the authors to specify a particular subset of generative mu-
sic systems. Any generative music system depends on both
sonic materials and the principles by which they are orga-
nized. Generative audio systems, as coined here, have a tight
coupling between these two elements, and are related to
Holopainen’s “autonomous instruments” [7]. That is, the
same process governing high-level musical details—like form,
dynamics, and timbre—should also generate the audio signal
in which those details are embodied. Such systems are ca-
pable of producing dynamic and surprising audio output with
little or no human input, and function entirely at the signal
rate. The generative process is not based on manipulations of
symbolic data, but instead functions directly on the output of
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audio synthesis or processing algorithms. Allpass filters, par-
ticularly in their time-varying form, produce very effective
generative behavior when placed in feedback networks and
their parameters are modulated in a variety of ways. Modula-
tion of parameters, however, necessitates a change in allpass
filter coefficients over time, and thus a handling of the insta-
bilities arising in such cases by use of a time-variant form.

This paper begins by reviewing first and second-order all-
pass filters and their application to a phase-distortion effect—
previous work on which this paper builds by handling the in-
stabilities caused by modulating allpass filter coefficients over
time. The presence of instabilities in the time-varying case is
illustrated in Section 3, along with an analysis method for
predicting stability of periodically time-varying coefficients.
It is then shown in Section 4 that a power-preserving rotation
matrix formulation of the second-order allpass, which can be
made-equal to the time-invariant case, ensures stability. Fi-
nally, the use of the time-variant filter in a generative audio
system is explored in Section 5.

2. SYNTHESIS APPLICATIONS OF ALLPASS
FILTERS

2.1 First and Second-order Allpass Filters

Allpass filters are well known for applying a frequency-dependent
delay to an input signal, while leaving its magnitude spec-
trum unmodified. The first-order allpass filter has a difference
equation given by

y(n) = ax(n) + x(n− 1)− ay(n− 1), (1)

where |a| < 1 for stability and for the filter to impart unity
gain at all frequencies (the characteristic after which the filter
is named). The phase behaviour can be controlled to some
extent by specifying a frequency fπ/2 (in Hz) at which π/2
phase shift is reached (the frequency at which the angle of the
filter’s frequency response is −π/2) and setting the allpass
filter coefficient to

a =
tan(πfπ/2/fs)− 1

tan(πfπ/2/fs) + 1
, (2)

where fs is the sampling rate used.
Though (2) offers some ability to specify phase behaviour,

additional control is afforded in the case of the second-order
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allpass filter,

y(n) = −cx(n) + d(1− c)x(n− 1) + x(n− 2)−
d(1− c)y(n− 1) + cy(n− 2), (3)

where c and d are set according to the desired “bandwidth” fb
of the phase transition region and the frequency fπ at which
the phase response is −π:

d = − cos

(
2πfπ
fs

)
and c =

tan(πfb/fs)− 1

tan(πfb/fs) + 1
. (4)

Adjusting fπ and fb allows for both placement of the fre-
quency point at which a phase shift of π is reached and con-
trol over the slope of the phase transition region. Figure 1
shows the effects of fπ and fb on the phase response.
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Figure 1. Effects of fπ and fb on the phase response of the second-order
allpass. In the left column, fπ changes while fb remains constant. In the
right, fb changes while fπ remains constant.

2.2 Frequency-selective Phase Distortion

In [6], a technique was described in which a user may ap-
ply a vibrato or phase-distortion effect to particular frequency
bands of a complex sound, leaving the rest of the spectrum
relatively unmodified. The technique involved sinusoidally
modulating the parameter fπ ,

f̃π(n) = fπ +M cos

(
2πfmn

fs

)
, (5)

where ·̃ indicates a function made time varying, M is the
depth of modulation, and fm is the modulation frequency.
The result is a second-order allpass similar to (3), but made
time varying,

y(n) = −cx(n) + d̃(n)(1− c)x(n− 1) + x(n− 1)−
d̃(n)(1− c)y(n− 1) + cy(n− 2), (6)

where

d̃(n) = − cos

(
2πf̃π(n)

fs

)
. (7)

By applying carefully designed modulation to the center
frequency fπ , it is possible to apply a frequency-selective
phase distortion effect. Due to the non-linearity of the phase
response, certain frequency bands (those nearest to fπ) are
modulated while others are left unmodified.

The results in [6] showed very promising musical potential,
but use of a “time-invariant” filter caused expected instabili-
ties. The work presented here addresses these issues so that
the original synthesis technique may be used more reliably
and its musical potential further explored.

3. STABILITY ANALYSIS OF TIME-VARYING
ALLPASS FILTERS

3.1 Instability of the Time-Invariant Allpass Filter

It is well-known that systems with constant parameters can
become unstable when those parameters are made time vary-
ing. In [8], it is shown that if the first-order allpass filter (1)
is made time-varying,

y(n) = a(n)x(n) + x(n− 1)− a(n)y(n− 1), (8)

the filter coefficient condition |a(n)| ≤ ε < 1 is not sufficient
to ensure energy preservation. It is demonstrated that when
x(n) is an impulse and filter coefficients a(n) = ε(−1)n, the
output energy is

||y(·)||2 = a(0)2 + (1− a(0)a(1))2
(
1 +

∞∑
n=2

n∏
i=2

a(i)2

)

= ε2 + (1 + ε2)2
∞∑
n=0

ε2n

=
1 + 3ε2

1− ε2 ,
(9)

which is greater than the input for any choice of ε < 1 [8],
and thus contradicting the all-pass filter assumption that all
frequencies pass with equal (unity) gain. A solution is sug-
gested in [8] in terms of a wave digital one port and a cor-
responding orthogonal matrix formulation that ensures en-
ergy preservation—a solution that is almost equivalent to the
power preserving rotation matrix to be discussed in Section 4.

3.2 Stability Analysis

Though the above example shows that stability cannot be en-
sured at the Nyquist frequency, it is not the case that all time-
varying coefficients will render (6) unstable. The coefficients
in (6) are modulated sinusoidally enabling the use of a tech-
nique for determining stability of a periodic time-varying sys-
tem by representing the system as a state space matrix [9]. It
should be noted that the use of a sinusoidal modulation signal
is not a requirement for stability, and the discussion here fol-
lows [6] where sinusoidal terms were used to simplify analy-
sis of spectral components added by phase distortion.



It is necessary to represent only the recursive part of (6) as
a system of equations which, in matrix form, becomes[

y1(n)
y2(n)

]
=

[
−d(n)(1− c) c

1 0

]
·
[
y1(n− 1)
y2(n− 1)

]
, (10)

or
y(n) = A(n)y(n− 1), (11)

where y(n) and y(n − 1) are state vectors of the system at
time sample n and n− 1, respectively, and A(n) is the time-
varying coefficient matrix. The filter state vector at time sam-
ple k may be determined by

y(k) = A(k)y(k − 1)

= A(k)A(k − 1)y(k − 2)

= ...

=

1∏
n=k

A(n)y(0), (12)

for known initial conditions y(0). Though stability can be
calculated by assessing the behavior of the state vector’s norm,

||y(k)||2 = y21(k) + y22(k) + . . .+ y2n(k), (13)

a simplified method can be used if filter coefficients change
periodically. For a periodically linear time-variant system,
the system monodromy matrix,

C(N, 0) =

[
C11 C12

C21 C22

]
=

1∏
i=N

A(n). (14)

connects arbitrary states of the system separated by N , the
period of variation, in samples, of d(n). The system is stable
if the absolute values of all eigenvalues |λ1, λ2, . . . , λn| of
C(N, 0) are less than or equal to 1, giving the following limits
which ensure stability:

1− C11 − C22 + det(C(N, 0)) ≥ 0

1 + C11 + C22 + det(C(N, 0)) ≥ 0

|det(C(N, 0))| ≤ 1, (15)

where

det[C(N, 0)] =
1∏

i=N

c = cN . (16)

By evaluating the conditions in (15), it is possible to deter-
mine whether a given set of filter parameters fm, fπ,M, fb,
will produce a stable, periodic time-varying filter. Figure 2
shows the complexity of the interactions between the four
parameters. The interdependence of these parameters makes
it difficult to intuitively understand which combinations will
produce instability, rendering this version of the filter very
dangerous for real-time use where a variety of settings may
be used.
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Figure 2. Influence on stability of the interaction between pairs of parame-
ters. Each subplot allows two parameters to vary, while the others are fixed.
White indicates a stable combination.

4. A POWER-PRESERVING ALLPASS FILTER

Though it is possible to analyze stability and determine which
combinations of parameters fπ , fb, M , and fm will produce
a system in which power is preserved, there is an alternate
power-preserving form of the first and second-order allpass
filters. Fortunately, for the application considered here, the
power-preserving allpass filter exhibits comparable phase re-
sponse characteristics, and can be parameterized in nearly the
same way as the time-invariant case.

Ensuring the output power of a filter is equal to the input
power,

N−1∑
n=0

x2(n) =

N−1∑
n=0

y2(n), (17)

can be accomplished by using a standard power-preserving
rotation matrix such as the one used in [10]:[

cos(r) − sin(r)
sin(r) cos(r)

]
. (18)

If multiple input signals to a system x1(n), . . . , xK(n) are
considered coordinates in K-space, then a rotation is an op-
eration that, by definition, will preserve the length, or corre-
spondingly, the magnitude of the input [11].

The second-order allpass filter is obtained using a pair of
power-preserving rotation matrices, yielding y(n)z1(n)

z2(n)

 =

 x(n)
z1(n− 1)
z2(n− 1)

DE, (19)



where

D =

cos(r1) − sin(r1) 0
sin(r1) cos(r1) 0

0 0 1

 (20)

and

E =

1 0 0
0 cos(r2) − sin(r2)
0 sin(r2) cos(r2)

 . (21)

With some algebraic manipulation, the equivalent difference
equation can be obtained

y(n) = b0x(n)− b1x(n− 1) + x(n− 2) +

b1y(n− 1)− b0y(n− 2), (22)

where

b0 = cos(r1) (23)
b1 = cos(r2)(1 + cos(r2)). (24)

If (22) is made equal to the time-invariant allpass in (3),
coefficients r1 and r2 can be expressed in terms of c and d,

r1 = arccos(−c) (25)
r2 = arccos(−d). (26)

and thus in terms of the corresponding desired control param-
eters fπ and fb as given by (4).

4.1 Differences in Output

Figures 3-6 show the difference in output between the original
difference equation version of the filter and the new power-
preserving one. Figure 3 shows the effect of an instanta-
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Figure 3. Effects of instantaneous change in fπ for difference equation and
power-preserving filter types.

neous change in fπ on both filters. The difference equation
form experiences a large jump in amplitude at the time where

fπ changes, while the power-preserving form experiences a
jump in phase. Figure 4 shows the difference in output be-
tween the two filters when they are made time-varying with
the same sinusoidal modulation parameters. For the most
part, the output is similar, but the difference equation form ex-
periences larger spikes in amplitude. These spikes are much
smaller in the power-preserving output. As implied by the
waveforms in Figure 4, the output of the two filters is very
similar in terms of harmonic content. In fact, as evidenced by
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Figure 4. Output of difference equation and power-preserving filter types for
identical modulation parameters. Parameters were chosen so that both filters
would remain stable.

the analysis in Figure 5, the outputs of the two filters share the
same harmonics, only differing slightly in their amplitudes.
Figure 6 shows the output of both filter types with parame-
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Figure 5. Magnitude spectrum of output of difference equation and power-
preserving filter types for identical modulation parameters. Parameters were
chosen so that difference equation filter would become unstable.

ters chosen so that the difference-equation form will become
unstable. The power-preserving matrix form maintains stabil-
ity, while the difference equation form produces output which
grows rapidly.

5. ALLPASS FILTERS IN FEEDBACK NETWORKS

As discussed in the introduction, the aim of this project is to
investigate the use of allpass filters in generative audio sys-
tems. It is thus useful to look at the behaviour and potential
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sound production of various configurations of allpass filters in
unity gain feedback networks. First, the time-invariant trans-
fer function is examined, followed by a qualitative study of
the spectra generated by the corresponding time-varying sys-
tem. Finally, an application will be given, in which time-
varying allpass filter is used to create a generative oscillator.

5.1 Transfer Function Analysis of Time-invariant
Feedback Systems

In the examples in this section, if the systems are excited with
an impulse, they behave as oscillators and may be left to os-
cillate indefinitely. The aim of this section is to gain insight
into the character of the generative oscillator, as well as how
they respond to control parameters fπ and fb.

H1(z)
N

z−t

X(z) Y (z)

Figure 7. Block diagram of allpass filter cascade in feedback configuration.

The output of a feedback system, like the one shown in Fig-
ure 7, comprised of a cascade of N second-order allpass fil-
ters given by (29) and a feedback delay of T , may be ex-
pressed

Y (z) =
(
X(z) + Y (z)z−T

)
H1(z)

N , (27)

yielding a system transfer function of

H2(z,N) =
Y (z)

X(z)
=

HN
1 (z)

1−HN
1 (z)z−T

. (28)

where

H1(z) =
b0 − b1z−1 + z−2

1− b1z−1 + b0z−2
, (29)

is the transfer function of the power-preserving second-order
allpass filter whose difference equation is given in (3).

It is clear that since H2(z,N) is not an allpass filter, the
overall effects of control parameters fπ and fb are no longer
what they were for H1(z) and warrant further exploration of
their behaviour in their new context.

When N = 1 and T = 1, the system transfer function re-
duces to

H2(z, 1) =
b0 − b1z−1 + z−2

1− (2b0 + b1)z−1 + (2b0 + b1)z−2 − z−3
.

(30)
Representing H2 in this way has the advantage of allowing
observation of its poles and zeros (shown in Figure 8 for fπ
constant at 11025 Hz and various values of fb between 500
and 4000 Hz). As might be expected of a unitary feedback
system, all three poles - two complex and one real (at DC) -
are directly on the unit circle. A decrease in fb corresponds
to a movement of the two zeros downward toward the unit
circle, and the two complex poles along the unit circle toward
a point of pole-zero convergence.
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Figure 8. Example pole-zero plots as fb is varied while fπ is kept fixed,
demonstrating effect of fb on zero location.

The behaviour of the poles and zeros has the effect, shown
in Figure 9, of a resonant peak in the amplitude response be-
ing shifted somewhat downward in frequency, with a notable
decrease in bandwidth. Accordingly, as shown in Figure 10,
keeping fb constant while increasing fπ results in a magni-
tude response characterized by a peak that loosely follows
fπ , but with a bandwidth that decreases slightly with an in-
crease in frequency. It is clear, therefore, that both parameters
affect the position and width of the peak, with the bandwidth
being more significantly influenced by fb, and the position
(frequency) more significantly influenced by fπ .

Finally, cascading multiple allpass filters (increasingN ) has
the effect of increasing the order of H2, resulting in the intro-
duction of an additional peak. Thus, as shown in Figure 11,
a cascade of N filters within H2 results in an amplitude re-
sponse with N peaks (excluding DC).

5.2 Spectra of Time-varying Feedback Systems

The following discussion considers the effect of various mod-
ulation parameters on the spectra of the output of a time-
varying feedback system. The parameters are made time-
varying as shown in Section 2.2.
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The effect of each of the parameters fπ , fb, fm, and M
on the output spectra is relatively clear, and in most cases is
related to the effect on the non-feedback systems described in
[6]:

• fm - Controls spacing of sidebands. Sidebands are
spaced at integer multiples of a central frequency (which
depends on fπ and fb as discussed above). Figure 12
shows this effect.

• fπ - Affects center frequency of sidebands. As fπ in-
creases, the center frequency increases, though not in a
1 : 1 relationship. Figure 13 shows this effect.

• fb - Affects center frequency of sidebands. As fb de-
creases, the center frequency decreases, becoming closer
to fπ . Additionally, the bandwidth of the output is in-
creased slightly with increasing fb. Figure 14 shows
this effect.

• M - Affects bandwidth of output. As M increases,
bandwidth increases. Figure 14 shows this effect. Side-
bands can alias around DC or the Nyquist frequency
back into the spectrum.

Finally, as an important note, consider the sidebands present
just above DC in Figures 12 - 15. These are components built
around the DC term, introduced by the real pole of the feed-
back system.
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Figure 12. Output spectra of allpass feedback network with time-varying
parameters. The parameter fm changes, while the others are fixed.

5.3 A Self-Modulating Allpass Feedback Network

The final network investigated here is one in which the sinu-
soidal modulation of (5) is replaced with a modulation signal
derived from a point in the network itself. In this configura-
tion, similar to one posed in [10], the delayed output of the
allpass filter is used to modulate the fπ parameter. A block
diagram of this system is shown below in Figure 16.

In order to use such a configuration, the delayed output sam-
ple y(n−1) must be scaled and biased in order to occupy the
same range as the parameter to be modulated. For example, if
we desire to modulate fπ with y(n − 1), then (5) is replaced
with

f̃π(n) = b+ sy(n− 1), (31)

where s and b are user-defined scaling and bias factors, re-
spectively.

In general, s and b should scale and offset y(n − 1) so that
it falls into the range expected for f̃π(n). However, this is not
strictly necessary for stability, as the cosine term in (7) will
wrap any values into the range −1 <= d̃(n) <= 1. Thus,
interesting results may be obtained by using other values for
s and b.

5.3.1 Qualities of Musical Feedback Systems

A configuration like the one proposed in this section is very
sensitive to particular combinations of s and b. It can there-
fore be difficult to assign meaningful parameters to such a



0 3675 7350 11025 14700 18375 22050

Frequency

−60

−40

−20

0

20

40

60

80
M

a
g
n
it

u
d
e
 (

d
B

)
Magnitude Spectrum, fm =1000, M=1000, fb =3000

fπ =2756

fπ =5512

fπ =11025

Figure 13. Output spectra of allpass feedback network with time-varying
parameters. The parameter fπ changes, while the others are fixed.

0 3675 7350 11025 14700 18375 22050

Frequency

−60

−40

−20

0

20

40

60

M
a
g
n
it

u
d
e
 (

d
B

)

Magnitude Spectrum, fm =1000, M=1000, fπ =11025

fb =2000

fb =1000

fb =500

Figure 14. Output spectra of allpass feedback network with time-varying
parameters. The bandwidth parameter fb changes, while the others are fixed.
M = 1000, fπ = 1000, fm = 1000.

system. Sanfilippo et al. provide terminology which is use-
ful in describing the behavior of musical feedback systems
like this one [12]. First, the system is iterative - it is self-
sustaining and produces variations on initial conditions. Sec-
ond, there is coupling between components of the system. All
components of the system are of equal importance, and this
equality can lead to a specific set of characteristic behaviors.
Finally, the system is also capable of self-organization, in
that the output tends to oscillate between two or more distinct
types of behaviors. Due to the circularity of the time-varying
feedback system, in which “effects are also causes,” there is
also an interaction between different musical attributes - loud-
ness, pitch, and timbre are interrelated.

This interrelatedness is easy to see when considering the
feedback system described here: as the magnitude of the sys-
tem’s output at y(n) increases, this causes a greater range of
values for f̃π(n) - equivalent to increasing M in the case of
sinusoidal modulation - and therefore a greater output band-
width. Higher frequencies at the output - related to both pitch
and timbre - cause a faster rate of change in y(n− 1). This is
equivalent to increasing fm and causes wider harmonic spac-
ing around spectral components.

Practically, these systems often produce very high-amplitude
output, which often has a DC offset, due to the unit-radius
pole at DC. Therefore, it is often necessarily to scale and ap-
ply a highpass or DC-blocking filter to the output.
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Figure 15. Output spectra of allpass feedback network with time-varying
parameters. The parameter M changes, while the others are fixed.

+X(z)
H1(z)

N

fπ(z)
Y (z)

B(z)

S(z)

z−1

+

×

Figure 16. A high-level block diagram of a self-modulating allpass feedback
network.

5.3.2 Sample Output

Consider a system where f̃π(n) is defined as

f̃π(n) = 3333 + 1173y(n− 1). (32)

An example of the output of this system is shown in Fig-
ure 17. The characteristic output of this system consists of
rhythmic “chirps” of increasing frequency, alternating with
steady tones and short bursts of noise. The chirps are grouped
into perceptible units by their duration. Most of the steady
tones are short, such as those from 0.0” to 1.5”, however
others are longer, like those beginning at about 1.9”. The
rhythms are quasi-periodic, never repeating exactly - the sense
is more of a series of iterative variations, rather than repeti-
tions. Occasional interjections of noisy, modulated material
occur, further challenging the sense of periodicity. There is
a semi-periodic oscillation between three types of material:
the rapid chirps, the steady tones, and the noise. Depend-
ing on the particular values of s and b, this self-organizing
behavior can continue indefinitely or eventually settle into a
more repetitive mode. It should be noted that the system is
extremely dependent on initial conditions, and a given set of
s and b will not necessarily produce the exact same results
each time they are recalled.

Figure 18 shows another view of the characteristic behav-
ior of this system. The values of fb and b are the same as
those used in Figure 17, while s has changed slightly (from
1173 to 1167). The change to s affects the rhythmic behav-
ior of the system, as evidenced by the much shorter duration
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Figure 17. Spectrogram showing self-organizing behavior of self-
modulating feedback system.

of the steady tones, and the increased prominence of noise.
The harmonic structure changes as well, with the presence of
more widely-spaced bands of emphasis (two are visible at ap-
proximately 800 and 2000 Hz), instead of the tightly spaced,
clearly defined harmonics in Figure 17.
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Figure 18. Spectrogram showing self-organizing behavior of self-
modulating feedback system.

6. CONCLUSION

As shown, time-varying allpass filters have a variety of appli-
cations in signal processing and generative music. This paper
described issues of stability in time-varying allpass filters.

Unfortunately, commonly used allpass filter formulations
are susceptible to instability when their coefficients are made
time-varying. Two methods of showing this instability were
used, though neither is useful in a real-time situation. Instead,
a power-preserving matrix form of the second-order allpass
was presented. This version of the filter is stable when its
coefficients are modulated.

The filter was used to extend a technique for applying
frequency-selective phase distortion to signals, by incorpo-
rating a time-varying allpass filter into a unity gain feedback
network. These networks were studied in terms of their static
frequency response and their output spectra when the allpass
component was made time-varying.

Finally, an application was given which demonstrated the
potential usefulness of the power-preserving allpass filter in
a generative audio system. A self-modulating feedback net-
work was designed, in which a system’s parameters were
modulated by its own output. This type of system is capable
of interesting, generative behavior, and will be studied further
in larger compositional contexts. Possible expansions include
more complex modulation schemes (for example. modulating
s or b with signals from points in the feedback network), or
building feedback networks using multiple allpass filters (or
cascades) with differing modulation parameters.
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