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ABSTRACT

In this work, a matrix formulation of a piecewise one-
dimensional waveguide model of the vocal tract (having
varying cross-sectional area along its length) is used to de-
rive model transfer functions suitable for both cylindrical
or conical sections, with outputs tapped at the position of
the glottis and the lips. The transfer function tapped at the
lips is then considered in more detail for cylindrical waveg-
uide sections and presented in its more useful form as a ra-
tio of polynomial functions in the discrete frequency vari-
able z, with coefficients vectors calculated for two cases:
one where model boundaries are scalar losses and the other
where losses are dependent on frequency. Through a trans-
fer function with coefficients that are dependent on param-
eters of cross-sectional area and boundary conditions, the
model may not only be controlled in real time, but the re-
lationship to other vocal tract representations, in particular
linear prediction coding (LPC) of speech, can be more eas-
ily shown, laying the foundation for inverse problems such
as parameter estimation and source-filter separation. Fi-
nally, a comparison between model transfer function coef-
ficients and those estimated by LPC (which assumes an all-
pole filter) is discussed, suggesting that lower-order (and
less computationally costly) LPC estimators might benefit
from acoustically-informed boundary losses and the result-
ing introduction of zeros into the transfer function.

1. INTRODUCTION

The work herein borrows strategies for waveguide mod-
eling of wind instrument bores and bells which, like the
vocal tract, have shapes that are frequently not cylindri-
cal or conical and thus have no known analytic solution.
Though round-trip propagation delay in purely cylindri-
cal and/or conical tubes may be modeled as a single one-
dimensional waveguide (bi-directional delayline) element,
the vocal tract has a varying cross-sectional area along its
length and is better modeled using a piecewise approach
(see Figure 1). Here, the vocal tract model is presented
from the perspective of musical instrument modeling the
desire to have parameters that can be both estimated and
controlled in real time. To that end, the theory of piece-
wise waveguide modeling is reviewed [1–3] and a matrix
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formulation is presented that leads to parametric transfer
functions modeling the vocal tract, one with output tapped
at the position of the glottis and the other at the lips, ini-
tially with no assumption on whether waveguide sections
are cylindrical of conical.
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Figure 1. A sequence of M = 4 conical/cylindrical
sections with radii rm (and corresponding cross-sectional
area) interleaved with N =M − 1 scattering junctions.

Though representations of the vocal tract have taken on
different forms in the literature several can be made fun-
damentally equivalent—this is true of LPC [4], Kelly-
Lockbaum [5] and piecewise models where sections are
made uniformly cylindrical. These techniques model for-
mants in the produced sound as a result of characteristic
changes in the vocal tract shape and, under certain ba-
sic conditions/configurations, similarly result in an all-pole
filter. The estimation of filter feedback coefficients using
LPC is a frequently used technique and methods have been
proposed to enhance its all-pole approximation by estimat-
ing, often iteratively, more accurate losses in the system
[6]. Here, the contribution of vocal tract boundaries (lip
reflection/transmission) and whether they are modeled as
scalar or frequency-dependent losses, is shown to cause a
divergence in model similarities. The suggestion is, there-
fore, that acoustically-informed boundaries as used in the
piecewise cylindrical model, and the introduction of ze-
ros into the transfer functions as a result of their inclusion,
may enhance the all-pole LPC estimation without requir-
ing higher and more computationally costly filter orders.

In the following, Section 2 reviews the theory of scat-
tering junctions and first derives a scattering matrix for
a single junction, then the “chain” scattering matrix for
the complete vocal tract model. The matrix representa-
tions are then used to derive the model transfer functions
in Section 3, applicable to both cylindrical and conical

mailto:trsmyth@ucsd.edu
http://creativecommons.org/licenses/by/4.0/


waveguide sections. Section 4 considers the special case
of cylindrical sections, showing a transfer function coeffi-
cient vector that is a function of the boundaries, first with
an assumption of scalar losses that is most strongly related
to LPC, then frequency-dependent losses, represented as
a convolution in matrix form, that are more physically in-
formed. Finally, in Section 5 a discussion is made on the
relationship between waveguide model and LPC followed
by a (preliminary) comparison of how both estimate the
known glottal pulse from the output of a physical model.
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z−1z−1

z−1 z−1
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Figure 2. The vocal tract’s varying cross-sectional area
along its length may be implemented as a piecewise
model—a cascade of two-port scattering junctions with
interleaved unit-sample bi-directional delays (cylindri-
cal/conical sections), with terminating boundary condi-
tions R0(z) at the glottis and RL(z) at the lips and with
outputs Y0(z) and YL(z) in response to input (X(z). Wall
losses are omitted.

2. VOCAL TRACT SCATTERING MATRIX

As shown in Figures 1 and 2, the one-dimensional piece-
wise conical/cylindrical model of the vocal tract is com-
prised of M sections, each a bidirectional unit-sample
delay, corresponding to acoustic propagation distance in
one time sample, interleaved with N = M − 1 two-port
Np = 2 scattering junctions.

Scattering, the reflection and transmission of a wave that
occurs when there is a change in the wave’s characteristic
impedance, may be modeled using a multi-port scattering
junction where the number of ports Np is twice the dimen-
sionality of the wave propagation and the wave impedance
on each port is determined by the medium (or geometry) it
serves to connect. For waves propagating along the length
of a diverging conical section terminated at port n a dis-
tance ln from the cone apex, the wave impedance is a com-
plex function of frequency given by

Zn(l, ω) =
ρc

Sn
· jω

jω + c/ln
, (1)

where Sn is the cross-sectional at the port, ρ is the medium
density and c is the propagation velocity. If the wave
is propagating in the opposite direction toward the cone
apex, effectively seeing a converging conical section, its

impedance is given by the complex conjugate,

Z∗
n(l, ω) =

ρc

Sn
· jω

jω − c/ln
. (2)

For plane waves traveling in cylindrical sections, the dis-
tance ln to the cone apex is infinite and the characteristic
impedance reduces to a real value:

Zn = ρc/Sn. (3)

Each of the junction’s ports has a physical pressure pn and
volume velocity Un that is the sum of wave components
propagating in “i” and out “o” of port:

pn = pin + pon, and Un = U i
n + Uo

n. (4)

and which are related by the characteristic impedance:

U i
n =

pin
Zn

, Uo
n = − pon

Z∗
n

, (5)

(the negative output volume velocity accounts for the fact
that it is a directional quantity and moves in the direction
in which it generates pressure [7]). Because the junction is
shared by all mediums it connects, the law for conserva-
tion of mass and momentum dictate that the pressure at the
junction be continuous and equal to the pressure on each
port:

pJ = pn = pin + pon, (6)

and the sum of volume velocity on each port is equal zero,

Np∑
n=1

Un =

Np∑
n=1

(U i
n + Uo

n) = 0. (7)

For the two-port (Np = 2) junction used in the piecewise
vocal tract model, it follows from (6) that

pi1 + po1 = pi2 + po2, (8)

and from (7), with the substitution given by (5), that

pi1
Z1

− po1
Z∗
1

= −
(
pi2
Z2

− po2
Z∗
2

)
. (9)

Equations (8) and (9) may be conveniently expressed in
matrix form,

C

[
pi1
po1

]
= D

[
pi2
po2

]
, (10)

where C and D are 2× 2 matrices given by

C =

 1 1
1

Z1
− 1

Z∗
1

 and D =

 1 1

− 1

Z2

1

Z∗
2

 , (11)

and rearranged to yield the expression relating left and
right port, n = 1 and 2, respectively, input and output pres-
sure wave components:[

pi1
po1

]
= C−1D

[
pi2
po2

]
, (12)



where

C−1D =
1

1

Z∗
1

+
1

Z1


1

Z∗
1

1

1

Z1
−1


 1 1

− 1

Z2

1

Z∗
2



=


Z1 (Z2 − Z∗

1 )

Z2 (Z1 + Z∗
1 )

Z1 (Z
∗
2 + Z∗

1 )

Z∗
2 (Z1 + Z∗

1 )
Z∗
1 (Z2 + Z1)

Z2 (Z1 + Z∗
1 )

Z∗
1 (Z

∗
2 − Z1)

Z∗
2 (Z1 + Z∗

1 )

 . (13)

As may be seen in Figure 3, the left port’s input and out-
put wave components are equal to the right and left trav-
eling pressure waves, denoted by + and − superscripts re-
spectively, in section m,[

pi1
po1

]
=

[
p+m
p−m

]
= pm, (14)

but the inverse relationship exists between wave compo-
nents on the junction’s right port and traveling waves in
neighbouring section m+ 1,[

pi2
po2

]
=

[
p−m+1z

−1

p+m+1z

]
=

[
0 z−1

z 0

]
pm+1, (15)

with vector element ordering made consistent with (14) by
multiplying with an antidiagonal matrix that also accounts
for the unit-sample delay/advance in one section.
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Figure 3. Relationship between the mth junction’s left and
right (subscript 1 and 2, respectively) port input and output
(superscript i and o, respectively) pressure wave compo-
nents to the right (+ superscript) and left (− superscript)
traveling pressure waves in adjacent sectionsm andm+1.

With the change to traveling wave variables made by sub-
stituting (14) and (15) into (12), the relationship between
right and left traveling pressure waves in adjacent sections
m and m+ 1 may be given by

pm = Ampm+1, (16)

where the scattering matrix for a single two-port junction

Am =
(
C−1D

)
m

[
0 z−1

z 0

]
, (17)

is defined as a product of (13) for the mth junction.
The “chain” scattering matrix for the complete vocal tract

model is obtained by first expanding (16),

pm = Am

Am+1pm+2︷ ︸︸ ︷
pm+1 = AmAm+1

Am+2pm+3︷ ︸︸ ︷
pm+2 (18)

so that traveling pressure waves in the first section can be
expressed as a product of those in the final section,

p1 = PM−1pM , (19)

where, for a sequence of M sections and N = M − 1
junctions, the model’s final 2×2 chain scattering matrix is
given by the repeated product

PM−1 =

M−1∏
m=1

Am =

[
P1,1 P1,2

P2,1 P2,2

]
. (20)

3. MODEL TRANSFER FUNCTIONS

To adequately represent the vocal tract so that it may be
coupled to a dynamic model of the vocal folds as in [8], it is
necessary to obtain two (2) transfer functions representing
the model: one with the output pressure tapped at the lips
YL(z) and the other with the output pressure tapped at the
glottis Y0(z) (see Figure 4).

R0(z)

z−1

J1

p−1

z−1X(z) p+1

. . .

Figure 4. A signal flow diagram of the first waveguide
section, showing how input X(z) may be represented as a
function of the glottis boundary R0(z) and traveling pres-
sure waves p+1 and p−1 as given by (21).

Both transfer functions are in response to input pressure
X(z) (corresponding to the product of the glottal flow and
the characteristic impedance at the entry to the vocal tract)
which, following Figure 4, can be defined in terms of the
right and left traveling waves in the first section:

X(z) = p+1 (z)z −R0(z)p
−
1 (z)z

−1, (21)

which, by employing (19) and (20), may then be expressed
in terms of traveling waves in the final section

X(z) =
(
P1,1p

+
M (z) + P1,2p

−
M (z)

)
z

−R0

(
P2,1p

+
M + P2,2p

−
M

)
z−1. (22)

Finally, using the definition of the open-end lip reflection
transfer function RL(z) = p−M (z)/p+M (z) and making the
substitution p−M (z) = RL(z)p

+
M (z) in (22), the input may

be expressed as a function of only the right traveling wave
in the final section:

X(z) = p+M (z) (P1,1 + P1,2RL(z)) z −
p+M (z)R0(z) (P2,1 + P2,2RL(z)) z

−1. (23)

The vocal tract transfer function HL(z) = YL(z)/X(z)
tapped at the lips is defined as the ratio of output pressure
YL(z) = p+M (z)TL(z) to input pressure X(z) which, by
substituting (23), yields

HL(z) =
TL(z)z

−1

P1,1+P1,2RL(z)−R0 (P2,1+P2,2RL(z)) z−2
.

(24)



The transfer function H0(z) = Y0(z)/X(z) is the ratio of
the pressure at the glottis (vocal tract base)

Y0(z) = X(z) + p−1 (z)(1 +R0(z))z
−1

= X(z) +

p+M (z)(P2,1 + P2,2RL(z))(1 +R0(z))z
−1,

to the system input X(z) given by (23), yielding

H0(z) =
P1,1 + P1,2RL(z) + (P2,1 + P2,2RL(z))z

−2

P1,1+P1,2RL(z)−R0 (P2,1+P2,2RL(z)) z−2
,

(25)

showing how boundary conditions R0(z) and RL(z) (fur-
ther discussed in Section 4.2) and, for a cylindrical sec-
tion, the assumed amplitude complementary transmission,
which for pressure is given by

TL(z) = 1 +RL(z), (26)

contribute to the vocal tract transfer functions.
Though the above transfer functions are sufficient for

a frequency-domain representation/implementation of the
model, it is preferable to represent it in its more useful
form as a ratio of polynomials in the (discrete) frequency
variable z, both to allow for time-domain implementation
using the corresponding difference equation (obtained by
taking the inverse z-transform) and also for comparison (or
mapping) to all-pole filter coefficients estimated by LPC.

4. POLYNOMIAL TRANSFER FUNCTION FOR
CYLINDRICAL SECTIONS

Though vocal tract sections may be modeled as being ei-
ther cylindrical or conical (see Figure 1) and the above
derivation makes no assumption of either, the section shape
is dependent on the choice of expression for impedance
(1)-(3) in the matrix given by (13). Conical sections in a
time-domain synthesis would require fitting a digital fil-
ter to the complex impedances given by (1) and (2) as was
done in [3] using the impulse-invariant method [9] and also
in [10] using the bilinear transform. Using cylindrical sec-
tions, on the other hand, has considerable computational
convenience for computing the transfer functions as a ratio
of polynomials, as well as allowing better comparison with
LPC and related Kelly-Lochbaum models.

p+m+1
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1 + km

1− km

p+m

p−m
z−1

z−1 z−1

z−1

−km

p−m+1

Figure 5. Kelly-Lochbaum scattering junction.

For cylindrical sections, as mentioned in Section 2, the
characteristic wave impedance (3) is not a function of fre-
quency but rather a real value inversely proportional to the

plane wave’s surface area. For waves on left and right ports
of the junction between sections m and m+ 1, this area is
the section’s cross-sectional area Sm and Sm+1, respec-
tively, and the scattering matrix (13) may be reduced to

(
C−1D

)
m

=
1

2Sm

[
Sm − Sm+1 Sm + Sm+1

Sm + Sm+1 Sm − Sm+1

]
=

1

1 + km

[
km 1
1 km

]
, (27)

where the reflection coefficient between sections

km =
Sm − Sm+1

Sm + Sm+1
, (28)

is that used in LPC and forms the Kelly-Lochbaum scatter-
ing junction shown in Figure 5.

Substituting (27) into (17) yields the single junction scat-
tering matrix between sections sections m and m + 1 for
the piecewise cylindrical model

Am =
1

1 + km

[
km 1
1 km

] [
0 z−1

z 0

]
, (29)

which, for M = 2 sections and N = 1 junction, yields a
model scattering matrix (20) given by

P1 = A1 =
z

1 + k1

[
1 k1z

−2

k1 z−2

]
, (30)

and for M = 3 sections and N = 2 junctions,

P2 = A1A2 = P1A2

=
z

1 + k1

[
1 k1z

−2

k1 z−2

]
z

1 + k2

[
1 k2z

−2

k2 z−2

]
=

z2

2∏
m=1

(1 + km)

[
c0 + c2z

−2 d2z
−2 + d0z

−4

d0 + d2z
−2 c2z

−2 + c0z
−4

]
,

where polynomial matrix elements have coefficients

c0 = 1, c2 = k1k2, d0 = k1 and d2 = k2. (31)

In general, for models having M sections and N =M − 1
junctions, the chain scattering matrix is given by

PN =

N∏
m=1

Am = PN−1AN =
zN

N∏
m=1

(1 + km)

KN , (32)

where

KN =

[
K1,1 K1,2

K2,1 K2,2

]
=

N∏
m=1

[
1 kmz

−2

km z−2

]

=


N−1∑
m=0

c2mz
−2m

N∑
m=1

d2(N−m)z
−2m

N−1∑
m=0

d2mz
−2m

N∑
m=1

c2(N−m)z
−2m

 . (33)



Polynomial entries in (33) have initial coefficients given by

c0 = 1 and d0 = k1, (34)

with remaining coefficients being recursively defined by

cN =
[
cN−1 0 0

]ᵀ
+ kN

[
0 d̃N−1 0

]ᵀ
dN =

[
dN−1 0 0

]ᵀ
+ kN

[
0 c̃N−1 0

]ᵀ
, (35)

where .̃ denotes the retrograde vector, one where the order
of elements is reversed (e.g. by multiplying with the ex-
change, or backward identity, matrix of appropriate size),
and where the length-2N coefficient vectors have the form

cN =
[
c0 0 c2 0 . . . c2(N−1) 0

]ᵀ
dN =

[
d0 0 d2 0 . . . d2(N−1) 0

]ᵀ
, (36)

with odd-ordered coefficients (even-numbered vector ele-
ments) being zero since polynomial entries in (33) have
only even-ordered terms (corresponding to the one-sample
propagation delay per section and between junctions).
Consistent with (31), for a number of junctions N > 1,
final coefficients are given by

c2(N−1) = k1kN and d2(N−1) = kN . (37)

Coefficient vectors for N = 1 are obtained by (34):

c1 =

[
c0
0

]
=

[
1
0

]
and d1 =

[
d0
0

]
=

[
k1
0

]
, (38)

for N = 2, by (35) or directly from (37):

c2 =


c0
0
c2
0

 =


1
0

k1k2
0

 , d2 =


d0
0
d2
0

 =


k1
0
k2
0

 , (39)

and for N = 3, by (35) (expanded for illustration):

c3 =
[
c2 0 0

]ᵀ
+ k3

[
0 d̃2 0

]ᵀ

=


1
0

k1k2
0
0
0

+ k3


0
0
k2
0
k1
0

=


1
0

k1k2 + k2k3
0

k1k3
0

=

c0
0
c2
0
c4
0


d3 =

[
d2 0 0

]ᵀ
+ k3

[
0 c̃2 0

]ᵀ

=


k1
0
k2
0
0
0

+ k3


0
0

k1k2
0
1
0

=


k1
0

k2 + k1k2k3
0
k3
0

=

d0
0
d2
0
d4
0

(40)

and so on for models having a greater number of junctions.
With the scattering matrix PN defined in (32) for cylin-

drical sections, substitution may be made into (24) to yield
transfer functions in their more useful form, as a ratio of
polynomial functions in z. The final expression for nu-
merator and denominator polynomials are, however, de-
pendent on the boundary conditions R0(z) and RL(z),
whether they are scalar or frequency dependent and, in the
latter case, the filter order.

4.1 HL(z) for Scalar Boundaries

In the simplified case (yet important because of its close
relationship to LPC coefficients) of scalar boundaries, any
losses may be lumped in R0 and the reflection at the lips
simply made lossless but inverting RL = −1 (and thus no
longer a function of z). Since, by (26), this would yield
a transmission at the lips given by TL = 1 + RL = 0
and a complete attenuation of the signal, the transmission
is omitted for this case. After a substitution of (32), the
transfer function (24) therefore becomes

HL(z) =
z−1

P1,1 + P1,2RL −R0(P2,1 + P2,2RL)z−2

=
z−(N+1)

∏N
m=1(1 + km)

K1,1 +K1,2RL −R0(K2,1 +K2,2RL)z−2

=
B(z)

A(z)
, (41)

with the numerator being a pure delay with a scalar value,

B(z) = z−(N+1)
N∏

m=1

(1 + km), (42)

showing HL(z) has no zeros, and a denominator given by

A(z) = K1,1 +K1,2RL −R0 (K2,1 +K2,2RL) z
−2

= a0z
−0 + a1z

−1 + · · ·+ a2(N+1)z
−2(N+1),(43)

with polynomial coefficients given by the (column) vector

AN = CNR, (44)

where CN is (2N+3)×4 matrix with columns constructed
from coefficient vectors cN and dN given in (35),

CN =


cN 0 0 0

0 d̃N 0 0
0 0 dN 0
0 0 0 c̃N



=



c0 0 0 0
0 0 0 0
c2 d2(N−1) d0 0
0 0 0 0
c4 d2(N−2) d2 c2(N−1)

0 0 0 0
...

...
...

...
c2(N−1) d2 d2(N−2) c4

0 0 0 0
0 d0 d2(N−1) c2
0 0 0 0
0 0 0 c0



(45)

with each column extending the length-2N vector by 3 ze-
ros (in bold for better visibility) to accomodate a down-
ward shift by one element from one column to the next,
and where R is a 4× 1 column vector

R =
[
1 RL −R0 −R0RL

]ᵀ
=
[
1 −1 −R0 R0

]ᵀ
(46)



holding scalar boundaries R0 and RL = −1. It may be
observed from (44)-(46) that the interleaved zeros charac-
terizing vectors cN and dN carries over to the coefficient
vector AN . Further, since by (34) c0 = 1, the first element
of AN is a0 = 1 and the last element is a2(N+1) = R0 so
that the structure of the length 2N +3 coefficient vector is

AN =
[
1 0 a2 . . . 0 a2N 0 R0

]ᵀ
. (47)

Equation (43) shows that for M cylindrical sections and
N = M − 1 junctions using scalar boundaries R0 and
RL = −1, the transfer functionHL(z) is of order 2(N+1)
and, save a scalar with pure delay in the numerator (42), an
all-pole filter consistent with the assumption made in LPC
of speech [4]. In fact, for cylindrical sections with sim-
plified scalar boundaries, the coefficient vector AN cor-
responds (save rounding error) to the autoregressive pre-
dictor coefficients estimated directly from the impulse re-
sponse of HL(z) by LPC when the order is 2(N + 1)
(and the unknown glottal flow and true boundary losses
do not contribute to the observed signal and complicate the
prediction—see Appendix 1).

Figure 6. A scalar boundary loss, R0 = 0.8 and RL = −1
produces a symmetry in the half-bandwidth of the fre-
quency response magnitude.

Factoring AN for the scalar loss case show poles that are
symmetric about the unit circle and a corresponding sym-
metry in the quarter-bandwidth (sampling rate divided by
four) of the frequency response magnitude, as seen in Fig-
ure 6 for area functions of the vowel sound “aa” [11].

4.2 HL(z) for Frequency-Dependent Boundaries

In more practical applications of voice modeling, though
the reflection at the glottis can often be approximated by a
scalar, the reflection at the mouth is better modeled by ac-
counting for frequency-dependent loss. Borrowing from
work in which waveguide elements are estimated from
measurement [12] and in which the open-end reflection of
a cylindrical tube was shown to be very close to theoretical
expectation [13], it was found here that a cascade of two
first-order shelf filters, producing a second-order-section
(SOS) and having the form

RL(z) =
BL(z)

AL(z)
= − (bL)0 + (bL)1z

−1 + (bL)2z
−2

1 + (aL)1z−1 + (aL)2z−2
,

(48)

with coefficient vectors

BL =
[
(bL)0 (bL)1 (bL)2

]
AL =

[
(aL)0 (aL)1 (aL)2

]
, (49)

and with a transition frequency of ωt = c/rM , as shown
in Figure 7, produced a very good fit. With the assumption
that the transmission is the amplitude complement of the
lip reflection (26), it may be given here by

TL(z) = 1 +RL(z) =
AL(z) +BL(z)

AL(z)
. (50)

Figure 7. A cascade of two first-order shelf filters, each
with band-edge gain of -10 dB, produces a second-order
filter having the form given in (48) and with transition
ft = c/(2πrM ) Hz (blue). This modeled response pro-
duces a good fit to the theoretical response of an open-end
cylindrical tube having radius rM , the radius of the final
cylindrical section when the vocal tract model is config-
ured to the vowel sound “aa” (red).

Substituting (48) and (50) into (41) yields the vocal
tract transfer function tapped at the lips with frequency-
dependent boundaries (denoted by .̂):

ĤL(z)=
TL(z)z

−(N+1)
∏N

m=1(1 + km)

K1,1+K1,2
BL(z)

AL(z)
−R0

(
K2,1+K2,2

BL(z)

AL(z)

)
z−2

=
B̂(z)

Â(z)
, (51)

where the numerator as a polynomial in z is given by

B̂(z) = (AL(z) +BL(z))z
−(N+1)

N∏
m=1

(1 + km)

=
(
b0 + b1z

−1 + b2z
−2
)
z−(N+1)

N∏
m=1

(1 + km),

having coefficients obtained by summing vectors in (49),[
b0 b1 b2

]
= AL +BL, (52)

and showing an introduction of zeros into the all-pole
transfer function HL(z) given in (41) for scalar bound-
aries. The denominator of (51) as a polynomial in z is
given by

Â(z) = K1,1AL(z) +K1,2BL(z)−
R0 (K2,1AL(z) +K2,2BL(z)) z

−2

= â0z
−0 + â1z

−1 + · · ·+ â2(N+2)z
−2(N+2),

(53)



showing polynomial multiplication terms that require
(acyclic) convolution of coefficients to produce coefficient
vector ÂN which, in matrix form, is given by

ÂN =
[
â0 â1 â2 . . . â2(N+2)

]
=

 CN

0 0 0 0
0 0 0 0

 R̂0 +

0 0 0 0
CN

0 0 0 0

 R̂1 +

0 0 0 0
0 0 0 0
CN

 R̂2,

(54)

where CN from (45) is extended by two rows of zeros to
accommodate the convolution length (2N+3)+2 (the sum
of CN column length and RL(z) coefficient vector length
minus one) and the downward shift of one row for each
subsequent term in the sum. Equation (54) also requires
a modification of the scalar boundary vector in (46) so it
holds coefficients of RL(z) for corresponding nth-order
terms as indicated by the subscript n:

R̂n =
[
(aL)n (bL)n −(aL)nR0 −(bL)nR0

]ᵀ
.

(55)
Finally, in addition to being two elements longer than AN ,
it is, perhaps, worthwhile to note that the coefficient vector
ÂN no longer has the structure of interleaved zeros for
odd-ordered terms, and is a vector more typical of an LPC
estimation from an actual recorded speech signal.

5. DISCUSSION AND CONCLUSIONS

As mentioned in Section 4 and Appendix 1, the coefficient
vector AN corresponds to the linear prediction coefficients
estimated from the impulse response of HL(z) if the LPC
order is 2(N + 1). If, on the other hand, the LPC esti-
mation is on the impulse response of ĤL(z) and, corre-
spondingly, the order is increased to 2(N + 2), the order
of ÂN , the estimated coefficients will not accurately cor-
respond to ÂN since the assumption of an all-pole filter
no longer holds. Though an increased order creates a bet-
ter fit, this also introduces computational cost and, more
significantly, impedes the inverse problem by placing the
burden of representing losses on an increased number of
reflection coefficients km, thus reducing their correlation
to vocal tract length and cross-sectional area (parameters
frequently estimated from LPC coefficients).

Another way of comparing the LPC estimation to the
piecewise cylindrical waveguide model is by testing its
(in)accuracy in the inverse problem of source-filter sep-
aration and glottal flow estimation. Though a rigorous
treatment is beyond the scope of this work, a prelimi-
nary attempt at separating a model [8] generated volume
flow (source) from the vocal tract model HL(z) presented
herein (filter), can provide some insight into the role of
the boundaries. Consistent with expectation, as shown
in Figure 9, the inverse filter constructed with LPC esti-
mated coefficients produces a signal (middle) that is closer
to the signal produced by the inverse of ĤL without the
transmission filter TL(z) (bottom), a signal known as the
flow derivative, frequently estimated and fit to the well-
known parametric LF source model [14, 15]). When this
flow derivative is passed through an inverse lip radiation
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Figure 8. Coefficient vector Âz and same-order LPC esti-
mation from the impulse response of ĤL(z) (top) and cor-
responding frequency response magnitudes (bottom).

(derivative) filter L(z) = 1 − dz−1, where d is close
to one ( [6, 16]), the resulting signal (Figure 10, mid-
dle) is effectively integrated and shows a closer fit to the
original volume flow (Figure 10, top), strongly suggesting
that an accurate (acoustically-informed) lip reflection with
amplitude-complementary transmission, may improve the
problem of source estimation.

6. APPENDIX 1

For the transfer function

HL(z) =
YL(z)

X(z)
=
z−(N+1)

∏N
m=1(1 + km)

1 +
∑2(N+1)

i=1 aiz−i
, (56)

the difference equation is given by the inverse z-transform
to yield output y(n) at time sample n:

y(n) =

N∏
m=1

(1+km)x(n− (N +1))−
2(N+1)∑

i=1

aiy(n− i).

(57)
The impulse response h(n) is the output in response to an
input that is the unit step function x(n) = u(n) which, by
definition, has a non-zero value only when n = N + 1,
yielding

h(n) =



0, for n < N + 1
N∏

m=1

(1 + km), for n = N + 1

−
2(N+1)∑

i=1

aih(n− i), for n > N + 1.

(58)

In linear prediction, future values of a discrete-time sig-
nal are estimated as a linear function of previous samples,
a model that may be represented by an expression that is
very similar to the final case of (58) where the impulse re-
sponse h(n) is defined for n > N + 1 (an actual model
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Figure 9. Known model glottal flow (top); signal from in-
verse filter with LPC estimated coefficients (middle); sig-
nal from 1/ĤL(z) without transmission TL(z) (bottom).
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Figure 10. Known model glottal flow (top); signal from
inverse filter with LPC estimated coefficients with the in-
verse of a lip radiation filter 1/L(z) (middle); signal from
1/ĤL(z) without transmission TL(z) (bottom).

would also account for prediction error). In practice, for
a sufficiently long h(n), one with enough samples that the
infinite impulse response is allowed to decay very close to
zero, the estimation of coefficients corresponding to AN

may be made with negligible error.
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