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ABSTRACT

In this research, the behaviour of the differential equation govern-
ing volume flow through a pressure-controlled valve is examined
with particular attention given to the rather troublesome transition
between an open and closed valve. A closed-form solution for the
time evolution of volume flow is given and used to derive an up-
date for the volume flow. The result is a smooth, nearly alias free
transition between the two states. The form of the update is similar
to that of a leaky valve where the leakage decreases as the volume
flow decreases.

1. INTRODUCTION

Pressure controlled valves exist in mechanically driven musical
instruments such as brasses and woodwinds and are also found
in many biological sound producing mechanisms such as the vo-
cal folds in the human larynx and the vibrating membrane in the
songbird’s vocal organ, the syrinx. Aliasing is a common problem
in physical modeling synthesis, and in particular in models with a
pressure controlled valve where a membrane or reed has the ability
to close completely. Depending on how this event is handled, an
abrupt termination of air flow in a closed valve can create undesir-
able discontinuities among other artifacts.

Relatively low audio sampling rates can create situations where,
in the worst case, the model becomes completely unstable when
discretized using an algorithm whose accuracy is dependent on
the sampling period. In some instances this is remedied by mov-
ing to a higher-order-error algorithm such as the trapezoid rule for
numeric integration [1, 2, 3].

Much of the high frequency content circulating in a system
involving a valve and an acoustic tube will be removed through
the use of reflection and wall attenuation filters, which, lowpass by
nature, tend to reduce the effects of mild aliasing. In some cases
however, a model may seem satisfactorily stable yet there will still
be evidence of aliasing components in the output spectrum which
can only be removed at the source.

2. AMODEL FOR A PRESSURE CONTROLLED VALVE

There are three possible configurations for the motion of a pressure-
controlled valve in acoustic tubes [4]: 1) the valve is blown closed
(as in the case of woodwind instruments), 2) the valve is blown
open (as in the case of the human larynx and lip reed instruments)
and 3) the valve moves perpendicular to the direction of air flow (as
in the case of the avian syrinx) [5]. Though valves will often use

combinations of these configurations, one will usually predomi-
nate and make a satisfactory approximation to the valve’s overall
motion [2].

As this research was developed while modeling the avian sy-
rinx, the digital simulation of air flow through the valve is pre-
sented in the context of the transverse configuration. The differ-
ential equations describing air flow through other valve configura-
tions are very similar however, and therefore also may make use
of the results presented here.

The airway in the songbird consists of a trachea which di-
vides into the left and right bronchus at its base. At the top of
each bronchus, just below the junction with the trachea, a flexible
membrane forms a constriction (or pressure-controlled valve) with
varying heights in the bronchial lumen (see Figure 1) [6, 7, 2, 3].
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Figure 1: The transverse model of a pressure controlled valve.

During voiced song, the membrane is set into motion by air
flow, vibrating at a frequency determined partly by its mass and
tension, and partly by the resonance of the air column to which
it is connected [7]. The model of the valve displacement and the
resulting pressure through the constriction is based on the mechan-
ical properties of the membrane and the Bernoulli equation for the
air flow. The methods used for digitally simulating the avian vocal
tract model are more thoroughly described in [3] and [2].

The model has the following four key variables which vary
over time during sound production:

po =  pressure on the bronchial side of the constriction
U £ airvolume flow through the syrinx

z £ displacement of the membrane
p1 2  pressure on the tracheal side of the constriction

Figure 2 shows the time evolution of the four variables in re-
sponse to an example applied bronchus pressure. When the valve
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Figure 2: Model variable waveforms.

is open, the pressure difference across the valve channel and the
volume flow through the valve drive the volume flow derivative,
and in turn influence the valve position and the pressure on either
side of the valve. When the valve is closed, there is no volume flow
through the valve, and the pressure on either side of the valve is
free to evolve independently. These two behaviours are expressed
every cycle as the valve opens and closes in response to an input
pressure and the energy reflected from the trachea opening.

The four model variables are simulated by discretizing their
corresponding differential equations. The valve motion derivative
is expressed in terms of the volume flow and pressures, the pres-
sure derivative as a function of the flow and valve geometry, and
the volume flow derivative as a function of the volume flow, pres-
sures, and valve position [2, 3]. The volume flow is the focus in
this paper and is given by

dU 2 /A(2) U’
i R VITE €y
where A(t) = ax(¢) is half the cross-sectional area of the valve.
In simulating the valve, care must be taken in computing the
behaviour of volume flow between open and closed states. This is
made more difficult by the singularity in (1) as the valve opening
approaches zero.

2.1. Model Aliasing

Though the waveforms in Fig. 2 may seem well behaved, they are
in fact heavily aliased. In Fig. 7, an example of the model output
spectrum is shown for a constant input pressure and an increasing
syrinx tension. As the syrinx tension increases, the pitch increases.
There is a corresponding decrease in the pitch of the aliased com-
ponents, creating a clearly visible crosswork pattern.

It is well known that aliasing is caused by switching based on
a level threshold in discrete time signals. Thus, as Fig. 2 indicates,
aliasing is caused by the truncation of the volume flow U(¢) to
zero when the valve closes. As illustrated by the magnified plot of
volume flow in Fig. 3, U(t) is forced to zero on a sample bound-
ary. Regardless of the value of U(t) predicted by updating (1), air
volume flow is still being set to zero when the valve is closed since
no air should flow through a closed valve.
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Figure 3: A magnified view of volume flow showing truncation on
a sample boundary.

Truncating the volume flow on sample boundaries is problem-
atic. Depending on the period of the signal, the clipping may
not happen at the correct phase and aliased components will be
generated. This is illustrated in Figure 4 which shows a sinusoid
and its truncated version along with their respective power spectra.
Aliased components appear as peaks at nonharmonic frequencies.
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Figure 4: Figure (a) shows a full (dotted line) and truncated (solid
line) version of a sine wave. Plot (b) shows the desired unaliased
power spectrum of the solid line waveform in (a) and plot (c) shows
the artifacts introduced in the spectrum as a result of abruptly trun-
cating the sinewave.

3. VOLUME FLOW BEHAVIOUR

Consider the case where half the valve channel area A(t) = axz(t)
is sufficiently small that the first term of (1) can be ignored and the
differential equation for U(¢) can be approximated by

au U’

dt T 4A@)3]

which is in the form of a so-called Bernoulli differential equation
[8]. Though this differential equation is nonlinear in U(t), it may

At) < 1, (2)



be converted to a linear form by the substitution
1
U(t)

Writing (2) in terms of W (t) gives the following new differential
equation for U(¢)

W(t) = ®

19 1 dw

& T TWE?R d @
where o .
Tdt T 4A(R) ®)
This equation is easily integrated to solve for volume flow:
t dr
W) = / W +C, (6)
1
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where the constant of integration C' may be set given knowledge
of U(t) at a particular time ¢o. Solving for C,

U(t) = Ulto) —. ®
1+ Ul(to) /to A2

Note that when the area A(t) is small, the integral in the de-
nominator of (8) is large, and any initial positive value of volume
flow is quickly reduced to zero without crossing zero, as would
be expected for a closing valve. This observation provides justi-
fication for having zero volume flow when the valve area is zero.
The small valve area solution to (8) suggests a possible alternative
to truncating U when the valve is closed (the original solution to
the singularity in (1) that resulted in aliasing). If the valve were
slightly leaky, e.g.,

A(t) = A(t) + A, (9)

for a small leakage area A, the singularity at zero area would be
avoided, and the volume flow behaviour would be relatively un-
changed. However, it is not sufficient to use a leaky valve in place
of one that is truncated because though this may reduce the slope of
U (t) it also introduces the undesirable behaviour of volume flow
oscillating about zero.

4. CORRECTED VOLUME FLOW UPDATE

The difficulty with discretizing (1) in the presence of small valve
areas is illustrated in Fig. 5. Since, as Fig. 3 indicates, the slope of
U () is decreasing with decreasing volume flow, predictions of the
slope based on (1) tend to overshoot zero volume flow. It would
therefore be preferable to use the value of dU(¢)/dt as predicted
by the small area solution (8) to update the volume flow when A(%)
is small.

In order to see how this solution should be incorporated into
the volume flow update, consider the value of U(t) at time to + T,
T being the sampling period. Starting with the small area solution
for volume flow (8), but in a more convenient form
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Figure 5: In the case of a large sampling period T', updating the
volume flow using (1) can cause U to overshoot. The dotted line
represents the actual value of U.

the valve channel area is assumed to be constant at A(to) during
the time interval [to, to + T']. Substituting into (10)

1 1 -t
and the volume flow at to + T is
-1
U(to+T) = U(to) [1 + %T] . (12)

Using the first order backwards difference approximation, the new
differential equation for U(t) becomes

dU  Ulto+T)—Ulto)

da T (13)
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Comparing the form of (14) to (2) note that the Bernoulli terms

-1
are identical, save a factor of [1 + U(to)/4A(t0)3/2T] . This

factor has the effect of reducing the derivative in the presence of
small channel areas or large sample periods. Rewriting (14) gives

au Ul(to)?

dt T T 4A(t0)*2 + U(to)T ' (15)

Note that in this form the Bernoulli term is similar to that of (2),
with a valve having increased area. In other words, it has become a
leaky valve whose leakage increases with increasing volume flow.

In addition to creating the desired effect of a gentler slope,
this new form for the Bernoulli term (15) solves the numerical
instability in (1) by adding a non-zero term to the denominator,
allowing A(t) to take on a zero value. It is no longer necessary to
manually halt the air flow the moment the valve is closed. Rather,
as can be seen in Figure 6, the air flow is now being brought to
zero along a more accurate and smooth trajectory.

The final feathered update for volume flow when discretized
using the trapezoid rule for numerical integration [1] is given by

dU | T _ (2 A(to)(p )
av awy T (zvAat) = oy
dt to+T dt to 2 P
Ulto)? T (16)
4A(to)2 + U(to)T ) 2
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Figure 6: Volume flow truncated and with “leaky” term added.

5. CONCLUSIONS

The differential equation (1) describing the behaviour of volume
flow (1) can be numerically unstable because of the singularity
in the Bernoulli term when the valve closes. Moreover, aliasing is
caused by abruptly cutting off flow when the computed flow passes
through zero. Both problems are addressed by incorporating the
new small-area solution for U (¢). The volume flow is now updated
in a way which produces smoother transitions between open and
close valves. This more accurate and numerically robust solution
eliminates the original instability and reduces aliasing, as shown
in Fig. 8.
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Figure 7: Model output spectrum with a truncated volume flow.

Spectrum of Model Output with "Leaky Valve"
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Figure 8: Model output spectrum with the ““leaky” valve.



