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ABSTRACT
In this work, the relationship and, under certain conditions equiv-
alence, between LPC and a piecewise cylindrical waveguide (or
Kelly-Lochbaum) model of the vocal tract is found to be largely
tied to the lip reflection and transmission. Herein, the elements of
a piecewise waveguide model are reviewed and final corresponding
transfer functions presented for two cases, one in which the bound-
ary losses are scalar, showing a more obvious relationship to the
all-pole LPC estimation, and one in which the lip reflection is fre-
quency dependent, which introduces a zero in the transfer function
and a more obfuscated relationship to LPC. In previous work, it
was found that the theoretical open-end reflection of a cylindrical
tube is well approximated by a single pole filter. Here it is mod-
eled as a first-order shelf filter, which has a useful property that
simplifies its estimation from denominator polynomial coefficients.
For both scalar and frequency-dependent cases, waveguide bound-
ary losses are estimated directly from LPC coefficients showing a
significant role of lip reflection/transmission in the relationship be-
tween waveguide and LPC models, and in particular, how the ele-
ments of one might be fit to elements of the other.

Index Terms— speech synthesis, waveguide model, LPC, vo-
cal tract modeling, Kelly-Lochbaum

1. INTRODUCTION

It is widely accepted that the human voice can be modeled by
source-filter techniques, that is, that pressure in the vocal tract,
the filter, doesn’t significantly influence the vibration of the vocal
folds and the resulting train of glottal pulses into the vocal tract that
produce the source, and that their coupling is unidirectional with
very little (if any) feedback from filter to source.

Both waveguide synthesis [1] (including Kelly-Lochbaum [2]
and the equivalent piecewise cylindrical model [3]) and linear pre-
dictive coding LPC [4] have been used to model the vocal tract fil-
ter, with a relationship between the two strongly implied [5]. One
of the main differences between waveguide synthesis and LPC is
in the modeling approach, the former simulating the physical sys-
tem governing wave propagation in the vocal tract while the latter
operating on the spectrum of the voice signal, analyzing and fitting
an all-pole filter to its spectral envelope so as to identify (and even
separate) components that are due to the source, the glottal pulse
(or flow) and those that are due to the filter, the vocal tract. In the
end, it is perhaps not surprising that the two methods, at least under
certain situations, can be shown to be equivalent.

In this work, the transfer function corresponding to the piece-
wise cylindrical waveguide model is provided [6] and it’s relation-
ship to the all-pole filter is examined for two cases, one where the
boundary losses are scalar and one more accurate representation,

where the boundary, and specifically the lip reflection/transmission
is frequency dependent. The first case produces an all-pole filter
having a more obvious relationship to that estimated by LPC, while
the second case can be modified (by deconvolving a simple first-
order high-pass filter) to produce an all-pole from which the LPC
coefficients may be estimated. In both cases, an accurate all-pole
coefficient vector can be used to estimate the boundary losses.

2. PIECEWISE CYLINDRICAL WAVEGUIDE MODEL

Though round-trip propagation delay in purely cylindrical and/or
conical tubes may be modeled as a single waveguide (see Figure 1,
top), the vocal tract has a varying cross sectional area along its
length (see Figure 2) that is better modeled using a piecewise ap-
proach [7, 8], consisting of a sequence of M sections, each a bidi-
rectional unit-sample delay, interleaved with N =M − 1 two-port
scattering junctions accounting for the reflection and transmission
that occurs with a change in cross-section (see Figure 1, bottom).
Boundary losses are modeled as a reflection at the glottis R0 (as-
sumed herein to be scalar) and a reflection and transmission at the
lip, RL(z) and TL(z), respectively. The input X(z) corresponds to
the glottal flow, and the output YL(z) to the speech signal.
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Figure 1: A waveguide model of an acoustic tube having termi-
nating boundary conditions R0(z) (at the source/input X(z)) and
RL(z), along with transmission TL(z) producing output YL(z).
The pure delay of M samples suitable for conical/cylindrical tubes
is replaced by a sequence of unit-sample bidirectional delays in-
terleaved with two-port scattering junctions that model reflec-
tion/transmission at changes in the vocal tract’s cross-sectional area.
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Figure 2: A vocal tract with varying cross-sectional area along its
length is modeled here as a sequence of four cylindrical sections
with cross-sectional areas S1, S2, S3, and S4, interleaved with three
two-port scattering junctions J1, J2 and J3.
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Figure 3: The Kelly-Lochbaum scattering junction, showing how
right and left traveling wave components in adjacent sections m
and m+ 1 are related by reflection coefficient km.

For cylindrical sections, the relationship between pressure wave
components in adjacent sectionsm andm+1, separated by the two-
port scattering junction Jm, may be represented in matrix form:

pm = Ampm+1, (1)

where the column vector holding right and left traveling waves (de-
noted by + and − superscripts, respectively) in any section m is

pm =

[
p+m
p−m

]
, (2)

and the scattering matrix for cross-sectional areas Sm and Sm+1 is

Am =
1

2Sm

[
Sm − Sm+1 Sm + Sm+1

Sm + Sm+1 Sm − Sm+1

] [
0 z−1

z 0

]
=

z

1 + km

[
1 kmz

−2

km z−2

]
, (3)

where
km =

Sm − Sm+1

Sm + Sm+1
(4)

is the reflection coefficient used in the well-known Kelly-Lochbaum
scattering junction (Figure 3) and linear predictive coding (LPC).
Multiplication by scattering matrix (3) can be applied repeatedly,

pm = Ampm+1 = AmAm+1pm+2, (5)

to yield the expression relating traveling wave components in the
first and last section,

p1 =
N∏
m=1

AmpM =
zN

N∏
m=1

(1 + km)

KNpM , (6)

where the “chain” scattering matrix for N =M − 1 junctions is

KN=

N∏
m=1

[
1 kmz

−2

km z−2

]
=

[
K1,1 K1,2

K2,1 K2,2

]
. (7)

Polynomial entries in KN are given by

K1,1 =

N−1∑
m=0

c2mz
−2m, K1,2 =

N∑
m=1

d2(N−m)z
−2m,

K2,1 =

N−1∑
m=0

d2mz
−2m, K2,2 =

N∑
m=1

c2(N−m)z
−2m, (8)

and have initial coefficients given by

c0 = 1 and d0 = k1, (9)

with remaining coefficients obtained recursively by

cN =
[
cN−1 0 0

]T
+ kN

[
0 d̃N−1 0

]T
dN =

[
dN−1 0 0

]T
+ kN

[
0 c̃N−1 0

]T
, (10)

where ·̃ is used here to denote a vector in which the order of ts
elements is reversed, and where the length-2N coefficient (column)
vectors have the form:

cN =
[
c0 0 c2 0 . . . c2(N−1) 0

]T
dN =

[
d0 0 d2 0 . . . d2(N−1) 0

]T
,

with zeros occupying every second element due to the round-trip
delay of two samples in each section (an important defining struc-
ture of the piecewise-cylindrical waveguide model).

The transfer function corresponding to the waveguide model is
given by the ratio of the output pressure at the mouth (the speech
signal) YL(z) to the input pressure at the glottis X(z) which, fol-
lowing the signal flow in Figure 1, may be seen to be

HL(z) =
YL(z)

X(z)
=

TL(z)p
+
M

p+1 z −R0p
−
1 z

−1
=

TL(z)p
+
Mz

−1

p+1 −R0p
−
1 z

−2
. (11)

Employing the relationship between first and last section traveling
waves given by (6) and further substituting p−M = p+MRL(z) to
allow for cancellation of all traveling wave components, yields the
transfer function in its final non-polynomial form:

HL(z) =
TL(z)z

−(N+1)∏N
m=1(1 + km)

K1,1 +K1,2RL(z)−R0 (K2,1 +K2,2RL(z)) z−2

(12)
Since sections here are assumed to be cylindrical, the transmission
at the lips may be made amplitude complementary to the reflection
which, for pressure, yields:

TL(z) = 1 +RL(z). (13)

How (12) may be represented more conventionally as a ratio of
polynomials in incremental integer powers of z−1 and how this re-
lates to the all-pole filter that is estimated by LPC, is dependent on
the nature of the boundaries and in particular, whether RL(z) is a
scalar or a frequency-dependent loss.

3. LIP REFLECTION/TRANSMISSION AND LPC

3.1. Scalar Reflection

Consider first the simplified case where RL is a scalar value and
not a function of frequency. For this (unphysical) interpretation, the
vocal tract round-trip loss can be lumped into R0 and the reflection



2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 17-20, 2021, New Paltz, NY

at the mouth simply made inverting RL = −1. Because this would
yield an amplitude-complementary transmission (TL = 1 + RL =
0) in which there is no signal at the output, the transmission is ne-
glected for this case and the numerator of (12) is simply a scalar
value with a pure delay given by

B(z) = z−(N+1)
N∏
m=1

(1 + km) (14)

and the denominator, by (8), is a polynomial given by

A(z) =

N−1∑
m=0

c2mz
−2m +RL

N∑
m=1

d2(N−m)z
−2m

−R0

(
N−1∑
m=0

d2mz
−2m +RL

N∑
m=1

c2(N−m)z
−2m

)
z−2

=

2(N+1)∑
m=0

amz
−m

having coefficients given the column vector of length 2N + 3:

AN =


a0
0
a2
...

a2(N+1)

 =



cN 0 0 0

· d̃N 0 0
· · dN 0
· · · c̃N
0 · · ·
0 0 · ·
0 0 0 .


R (15)

where R is the 4× 1 column vector holding scalar losses

R =
[
1 RL −R0 −R0RL

]T
=
[
1 −1 −R0 R0

]T
.

(16)
It is worth noting that, as with the coefficient vectors of which the
matrix in (15) is comprised, every second element of AN is zero
and that, because the final element of c̃N is one, the final element
of AN holds the scalar loss R0.
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Figure 4: The magnitude response of HL(z) (blue) having scalar
boundary loss (R0 = 0.8 and RL = −1) and ĤL(z) (red) having
frequency-dependent loss, where lip reflection/transmission RL(z)
and TL(z) are modeled according to Figure 5. The former HL(z)
shows a symmetry in the quarter-bandwidth.

The vector AN corresponds to the LPC coefficients that are es-
timated when using a predictor such as the Levinson-Durbin recur-
sion. In practice, an accurate LPC estimation of AN (z) from actual
speech is fraught with difficulties. Nevertheless, the relationship to
the waveguide model may be illustrated by omitting consideration

of the glottal flow (and other contributions) and performing an or-
der 2(N + 1) estimation on the impulse response of HL(z), a con-
trived situation that would estimate AN precisely [6]. Of course,
like AN , the LPC coefficients would be interleaved with zeros and,
as shown in Figure 4 for vowel “aa”, produce a magnitude response
that is symmetric about fs/4 rather than half the sampling rate
fs/2. This redundancy suggests a more efficient estimation may
be made (without loss of information) by halving the LPC order,
with the required order corresponding to the number of sections
in the waveguide model N + 1 = M and/or the number of for-
mant peaks in the spectrum. Notably however, this would also result
in an assumed round-trip delay of only one sample per waveguide
model section, or equivalently, the original round-trip delay of two
samples but at twice the sampling rate (half the sampling period).
This is significant because it implies that, given an LPC estimation,
an equivalent waveguide model could be implemented at twice the
sampling rate, corresponding to interleaving the LPC vector with
zeros. As this would not produce an accurate physical representa-
tion (and would impede estimation of reflection coefficients and the
vocal tract area function) and would not be practical for real-time
use, the case of frequency-dependent loss is considered next.

3.2. Frequency-dependent reflection

Because the waveguide sections are cylindrical, the lip reflection
may be described theoretically by Levine and Schwinger [9] and,
though a better match is obtained using a second-order filter [10, 6],
as shown in Figure 5 for lip opening corresponding to the vowel
sound “aa”, a good approximation (with advantages described
herein) may be obtained using the first-order shelf filter:

RL(z) =
BL(z)

AL(z)
= − (bL)0 + (bL)1z

−1

(aL)0 + (aL)1z−1
, (17)

with coefficients, described in [11], given by

(bL)0 =
β0 + ρβ1
1 + ρα

, (bL)1 =
β1 + ρβ0
1 + ρα

, (aL)1 =
ρ+ α

1 + ρα
,

(18)
where

β0 =
(1 + gπ) + (1− gπ)α

2
, β1 =

(1− gπ) + (1 + gπ)α

2
(19)

and, if simplified for band-edge (Nyquist limit) gain 0 < gπ < 1,

α =
(
√
gπ − 1)2

gπ − 1
=

(
√
gπ − 1)2

(
√
gπ − 1)(

√
gπ + 1)

=

√
gπ − 1
√
gπ + 1

. (20)

The parameter

ρ = sin(ftπ − π/4)/ sin(ftπ + π/4), (21)

is the coefficient warping the filter to the proper transition frequency
0 < ft < 0.5 (0.5 corresponding to the Nyquist limit). Noting that

1− (bL)0 = ((1− β0) + ρ(α− β1)) /(1 + ρα)

(aL)1 − (bL)1 = (ρ(1− β0) + (α− β1)) /(1 + ρα),

and that applying (20) to (19) for 0 < gπ < 1 yields

β0 =
(
(1 + gπ)− (

√
gπ − 1)2

)
/2 =

√
gπ (22)

and
α− β1 = −(1−√gπ), (23)
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Figure 5: A shelf filter with band-edge gain gπ = 0.09 (-21 dB)
and transition ft = 0.25 produces a close match (at low frequen-
cies) to the theoretical reflection of an open cylinder (with opening
corresponding to that of vowel sound “aa”) as given by Levine and
Schwinger.

it may be seen that coefficients have the relationship

(aL)0 − (bL)0 = − ((aL)1 − (bL)1) . (24)

Incorporating amplitude-complementary transmission (13),

TL(z) = 1 +RL(z) = (AL(z) +BL(z))/AL(z), (25)

the model transfer function (12) becomes

ĤL(z) =
(AL(z) +BL(z))/AL(z)z

−(N+1)∏N
m=1(1 + km)

K1,1 +K1,2
BL(z)

AL(z)
−R0

(
K2,1 +K2,2

BL(z)

AL(z)

)
z−2

.

(26)
Multiplying numerator and denominator of (26) by AL(z) yields a
numerator polynomial that is different from (14) and given by

B̂(z) = (AL(z) +BL(z))z
−(N+1)

N∏
m=1

(1 + km) (27)

which, when incorporating (24), may be reduced to

B̂(z) = g(1− z−1)z−(N+1), (28)

a product of a pure delay and a first-order high-pass filter with gain

g = (1− (bL)0)

N∏
m=1

(1 + kM ), (29)

showing ĤL(z) is made to have zeros when the lip reflection is
frequency dependent. The denominator polynomial of ĤL(z) be-
comes

Â(z) = K1,1AL(z) +K1,2BL(z)

−R0 (K2,1AL(z) +K2,2BL(z)) z
−2, (30)

having coefficient vector ÂN = [â0 â1 ... â2N+3]
T given by

ÂN =



cN 0 0 0

· d̃N 0 0
· · dN 0
· · · c̃N
0 · · ·
0 0 · ·
0 0 0 .
0 0 0 0


R̂0 +



0 0 0 0
cN 0 0 0

· d̃N 0 0
· · dN 0
· · · c̃N
0 · · ·
0 0 · ·
0 0 0 .


R̂1

(31)

with the column vector holding reflection filter coefficients given by

R̂n =
[
(aL)n −(bL)n −R0(aL)n R0(bL)n

]T
. (32)

Just as the scalar loss R0 may be estimated as the last element of
AN , so may the reflection filter coefficients be estimated from ÂN ,
albeit with a little more effort. Since the first coefficient of cN and
d̃N is one and zero, respectively, it can be seen from (31) and (32)
that coefficient (aL)1 is simply the second element of ÂN so that,
with lip reflection filter coefficients in (17) defined by

bL =
[
−(bL)0 −(bL)1

]T and aL =
[
1 (aL)1

]T
,
(33)

denominator coefficients may be estimated as first and second ele-
ments of ÂN ,

âL =
[
1 â1

]T
. (34)

Further, it may be shown algebraically that, given by (24), the nu-
merator coefficients may be estimated from the first and last four
elements of ÂN : â0, â1, â2, â3 and â2N , â2N+1, â2N+2, â2N+3,
respectively, to yield

b̂L =
[
E −

√
E2 +Dâ1 E +

√
E2 +Dâ1

]T (35)

where

E = −1 + â1
2

and D = −

â3
â1
− â2

â2N
â2N+2

− â2N+1

â2N+3

. (36)

Finally, the scalar loss at the glottis is be given by

R0 = − â2N+3

(b̂L)2
= − â2N+2

(b̂L)1
, (37)

showing that boundary losses may be estimated from Â(z), inde-
pendent of the vocal tract shape. Though there remains the problem
of actually having an accurate Â(z) (since LPC would estimate a
much higher order filter as it tries to fit an all-pole filter to one hav-
ing zeros), it is suggested that first deconvolving the simple high-
pass filter in (28) from the speech signal before the LPC estimation
is a step toward that goal.

4. CONCLUSIONS

In this work, a matrix formulation of a piecewise cylindrical waveg-
uide model of the vocal tract is revisited to produce a transfer func-
tion that is dependent on both the varying cross-sectional area along
the vocal tract length and boundary losses due to reflection at the
glottis and the lip. Boundary losses are considered for two cases,
one where they are scalar, producing an all-pole transfer function
with a strong relationship to LPC (discussed herein) and the other
where the lip reflection is made frequency-dependent, a more physi-
cal interpretation that has the effect of introducing zeros to the trans-
fer function and creating a relationship to LPC that is less clear
(since LPC is known to estimate an all-pole filter). Nevertheless, it
is shown that if the lip reflection loss is assumed to have the prop-
erties of a first-order shelf filter, the numerator of the vocal tract
can be reduced to a product of a pure delay and simple high-pass
FIR filter with a gain which can be more easily deconvolved from
the transfer function to yield the denominator polynomial (and co-
efficients) from which lip reflection filter coefficients and (scalar)
losses at the glottis may be estimated.
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