Music 270a: Sinusoids

Tamara Smyth, trsmyth@ucsd.edu
Department of Music,
University of California, San Diego (UCSD)
September 30, 2019

Why Sinusoids are Important

- Sinusoids are fundamental in physics: many systems (e.g. mass-spring) oscillate in a quasi-sinusoidal motion known as simple harmonic motion.
- Bandlimited sounds may be viewed as the sum of a finite number of sinusoids having a different amplitude, frequency, and phase.
- The amount of each sinusoidal frequency present in a sound can be viewed by the sound's spectrum.
- The human ear acts as a spectrum analyzer: when sound enters the inner ear, each frequency in the sounds resonates at a position along the basilar membrane, where hair cells transmit the vibration to the auditory nerve at the appropriate rate.

Sinusoids

- "Sinusoids" is a collective term referring to both sine and cosine functions.
- A sinusoid is a function having the following form:

$$
x(t)=A \sin (\omega t+\phi) \quad \text { or } \quad x(t)=A \cos (\omega t+\phi),
$$

where x is the quantity which varies over time and

$$
\begin{aligned}
A & \triangleq \text { peak amplitude } \\
\omega & \triangleq \text { radian frequency }(\mathrm{rad} / \mathrm{sec})=2 \pi f \\
f & \triangleq \text { frequency }(\mathrm{Hz}) \\
t & \triangleq \text { time (seconds) } \\
\phi & \triangleq \text { initial phase (radians) } \\
\omega t+\phi & \triangleq \text { instantaneous phase (radians) }
\end{aligned}
$$

Figure 1: Sinusoid where $A=2, \omega=2 \pi 5$, and $\phi=\pi / 4$.

Amplitude and Magnitude.

- peak amplitude: the nonnegative value of the waveform's peak (either positive or negative); often shortened to simply amplitude.
- instantaneous amplitude of x : the value of $x(t)$ (either positive or negative) at time t.
- instantaneous magnitude: a nonnegative value given by $|x(t)|$; often shortened to simply magnitude.

Period

- One cycle of a sinusoid is 2π radians.
- The period T of a sinusoid is the time (in seconds) it takes to complete one cycle.

Figure 2: Sinusoid.

- Since sinusoids are periodic with period 2π, an initial phase of ϕ is indistinguishable from an initial phase of $\phi \pm 2 \pi$.
- We may therefore restrict the range of ϕ so that it does not exceed 2π. Typically we choose the range

$$
-\pi<\phi<\pi
$$

but we many also encounter

$$
0<\phi<2 \pi
$$

Phase

- The initial phase ϕ (also called phase offset or phase shift), given in radians, tells us the position of the waveform cycle at $t=0$.

Figure 3: Sine function $\phi=0$.

Figure 4: Sine function with $\phi=\pi / 2$.

Frequency

- The frequency f of the waveform is given in cycles per second or Hertz (Hz).
- Frequency is equivalent to the inverse of the period T of the waveform,

$$
f=1 / T \quad \mathrm{~Hz}
$$

- The radian frequency ω, given in radians per second, is equivalent to the frequency in Hertz scaled by 2π,

$$
\omega=2 \pi f \quad(\mathrm{rad} / \mathrm{sec})
$$

- The radian frequency is equal to the time derivative of the instantaneous phase of the sinusoid:

$$
\omega=\frac{d}{d t}(\omega t+\phi)
$$

- Note: if the phase is time varying, the instantaneous frequency is given by

$$
\frac{d}{d t}[\omega t+\phi(t)]=\omega+\frac{d}{d t} \phi(t)
$$

Sine and cosine functions.

- The sine and cosine function are very closely related and can be made equivalent simply by adjusting their initial phase:

$$
\sin \theta=\cos \left(\theta-\frac{\pi}{2}\right) \quad \text { or } \quad \cos \theta=\sin \left(\theta+\frac{\pi}{2}\right)
$$

Figure 5: Phase relationship between cosine (solid blue line) and sine (broked green line) functions.

- In calculus, the sine and cosine functions are derivatives of one other. That is,

$$
\frac{d \sin \theta}{d t}=\cos \theta \quad \text { and } \quad \frac{d \cos \theta}{d t}=-\sin \theta
$$

Time-shifting a signal.

- If a signal can be expressed in the form

$$
x(t)=s\left(t-t_{1}\right)
$$

we say $x(t)$ is a time-shifted version of $s(t)$.

- Consider the simple function

$$
s(t)=t \quad 0 \leq t \leq 1
$$

Figure 6: Time-shifting a signal.

- Shifting the function by $t_{1}=2$ seconds yields

$$
\begin{aligned}
& x(t)=s(t-2)=t-2 \\
&=t-2 \\
& \\
& 2 \leq t-2 \leq 1 \\
& 2 \leq 3
\end{aligned}
$$

which is simply $s(t)$ with its origin shifted to the right, or delayed, by 2 seconds.

- Shifting the function by $t_{1}=-1$ seconds yields

$$
\begin{aligned}
& y(t)=s(t+1)=t+1 \quad 0 \leq t+1 \leq 1 \\
& =t+1 \quad-1 \leq t \leq 0,
\end{aligned}
$$

which is simply $s(t)$ with its origin shifted to the left, or advanced in time, by 1 seconds.

- Summary:
- a positive phase indicates a shift to the left on the time axis (advance in time),
- a negative phase indicates a shift to the right (a delay in time).

Sinusoidal and Circular Motion

- Consider a vector of length one (1), rotating at a steady speed in a plane, the vector tracing a circle with a radius equal to its length.

Figure 7: A vector rotating along the unit circle.

- Each time the vector completes one rotation of the circle, it has completed a cycle of 2π.
- The rate at which the vector completes one cycle is given by its frequency.
- The length of the vector is given by its amplitude (which for simplicity, in this case, is one (1)).

Determining coordinates via Projection

- The x - and y-axis are the horizontal and vertical lines intersecting at the circle's centre.

Figure 8: The vector coordinates are determined by projecting onto the x and y -axis.

- Projecting 1 the vector onto the x - and y-axes allows us to determine its coordinates in the xy-plane.
- If the vector is rotated in a counterclockwise direction, at angle θ from the positive x-axis, projecting onto both the x - and y-axes creates right angle triangles.
- Trigonometric identities, with knowledge of θ and the vector length, will help us determine the coordinates:

$$
y=r \sin (\theta) \quad x=r \cos (\theta)
$$

[^0]
Projection of Circular Motion

- Projecting onto the x - and y-axis gives a sequence of points that resemble a cosine and sine function respectively.

Figure 9: Projecting onto the x and y axis.

In-Phase and Phase-Quadrature Components

- Every sinusoid can be expressed as the sum of a sine and cosine function, or equivalently, an "in-phase" and "phase-quadrature" component.
- Using the trigonometric identity ${ }^{2}$

$$
\sin (a \pm b)=\sin (a) \cos (b) \pm \cos (a) \sin (b)
$$

we see that

$$
\begin{aligned}
A \sin \left(\omega_{0} t+\phi\right) & =A \sin \left(\phi+\omega_{0} t\right) \\
& =[A \sin \phi] \cos \omega_{0} t+[A \cos \phi] \sin \omega_{0} t \\
& =B \cos \omega_{0} t+C \sin \omega_{0} t,
\end{aligned}
$$

where the amplitude A is given by

$$
A=\sqrt{B^{2}+C^{2}}
$$

and the phase ϕ is given by

$$
\phi=\tan ^{-1}\left(\frac{B}{C}\right)
$$

[^1]
Adding two sinusoids of the same frequency

- Adding two sinusoids of the same frequency but with possibly different amplitudes and phases, produces another sinusoid at that frequency.

Figure 10: Adding two sinusoids of the same frequency.

Vector Addition

- Since one vector represents one sinusoid, to add two sinusoids of the same frequency, we need only perform vector addition.

Figure 11: Adding sinusoids using vector addition.

- Since the vectors have the same frequency, they will rotate as a unit and their sum will have the same frequency.
- The sum vector $\mathrm{U}+\mathrm{V}$ in Figure 11 also has its own x and y component (from projecting onto the x - and y-axes) and therefore may have a different amplitude and phase.

[^0]: ${ }^{1}$ Projection can be thought of as a shadow.

[^1]: ${ }^{2}$ Also useful is the identity: $\cos (a \pm b)=\cos a \cos b \mp \cos a \cos b$

