Music 175: What is Sound?

Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD)

April 2, 2020

What is Sound?

If a tree falls in a forest and no one is there to hear it, does it make sound?

Figure 1: A mime in the forest.

Sound and Vibration


- The word *sound* is used to describe both:
 - 1. an auditory sensation in the ear

2. the disturbance in a medium that causes an auditory sensation

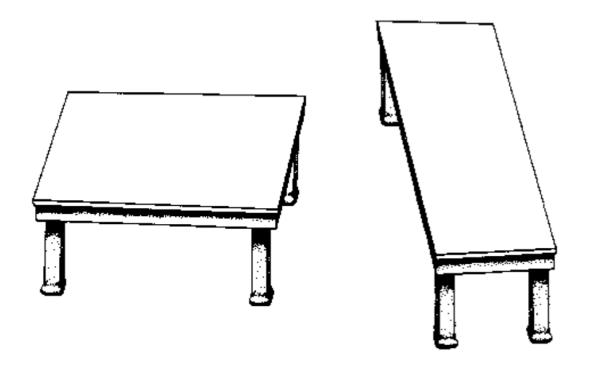
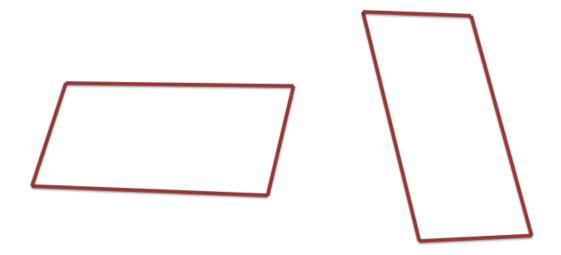
- Nearly all objects will vibrate when disturbed.
- Sound is the result of a wave created by a disturbance, that propagates through a medium from one location to another.

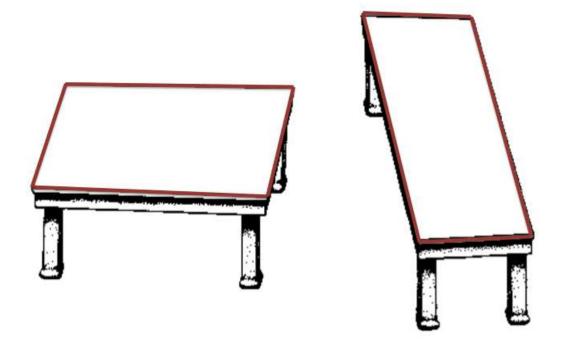
The Science of Sound

- **Acoustics** is the science that deals with the quantifiable measure of the *production*, *control*, *transmission* and *reception* of sound.
 - emcompasses disciplines such as physics,
 engineering, psychology, audiology, speech,
 architecture, neuroscience, music and more!
- **Psychoacoustics** is the study of the way humans perceive sounds.
 - things are sometimes different than they sound or appear.
 - internal representation can be quite different from the physical stimulus on the ear (or the retina).
 - consider a visual example of two tables (on the next slide).

Two Tables

• Describe the image below; are the tables different?


Figure 2: From Cook, Chapt. 3.

- Stating there are two tables is a *cognitive* interpretation:
 - patterns of lines are interpreted as 3-D objects;
 - tables are depicted as if in different orientations in space.

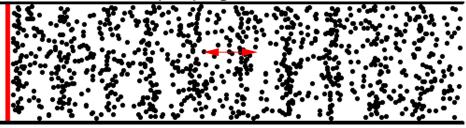
Removing Cognitive Interpretation

• Turning off the interpretation of "tables in space", we see two parallelograms of identical size and shape.

What is a wave?

• A wave is a disturbance or oscillation that travels from one location to another over a period of time.

Waves carry information/energy from one point to another—the medium in which they propagate is not transported!


- There are two main types of waves:
 - 1. Mechanical: waves propagate through a medium.
 - 2. **Electromagnetic**: wave propagation does not require a medium (they can travel in a vacuum).
- Which kind of wave is sound?

Direction of particle displacement

 Depending on the direction of its oscillations, a mechanical wave can be:

1. **Longitudinal**: Particle displacement is parallel to

the direction of wave propagation.

Click image for animation: (Courtesy of Dr. Dan Russell, Kettering University)

2. **Transverse**: Particle displacement is perpendicular to the direction of wave propagation.

Click image for animation: (Courtesy of Dr. Dan Russell, Kettering University)

Waveform

- The waveform of the sound shows the time evolution of the variations, illustrating:
 - **amplitude**: maximum particle displacement from rest position (Pa or N/m^2),
 - period: time to complete one cycle (s),
 - **frequency**: number of cycles per second (Hz),
 - wavelength: length of one complete cylce (m).

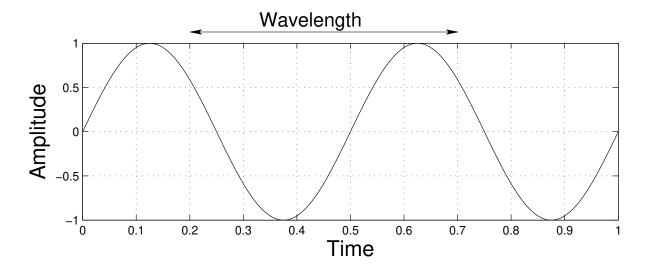


Figure 3: Sinewave.

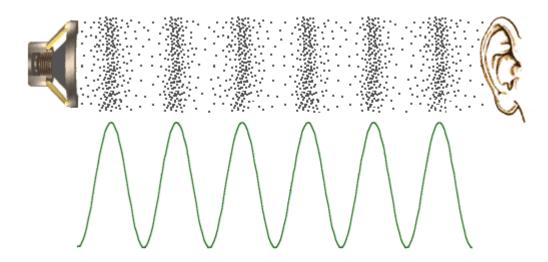
Sound Waves

- Sound waves are **mechanical waves**:
 - a disturbance travelling through a medium
 - transports energy from one location to another
- Sound waves travel in solids, liquid, or gas.
- In fluids (liquid or gas), sound waves are longitudinal (compression) waves.
- No material is transported as a result of mechanical waves.

Speed of Sound

- What is the approximate speed of sound in
 - 1. air? approx. 340 m/s.
 - 2. water? approx. 1,484 m/s.
 - 3. vacuum?
- Speed of sound is dependent on medium's
 - 1. density / compressibility (inversely related)
 - 2. stiffness (solids)
 - 3. temperature (fluids)
- Sound will travel faster in
 - solids than in liquids because solids are more difficult to compress;
 - liquids than gases because liquids are more difficult to compress.

Hot chocolate effect (Frank Crawford 1982)


- Click on youtube video: the Allassonic Effect:
 - frequency of sound heard from tapping the bottom of the cup of hot cocoa is a function of
 - 1. speed of sound;
 - 2. wavelength.
 - upon initial stirring of cocao, sound is transported via bubbles (gas) in the liquie, thus reducing the speed of sound and lowering the frequency;
 - as bubbles clear, sound travels faster in the liquid and the frequency increases.

Properties of Sound Waves

- Speed of sound
 - in air: 340 m/s
 - in water: 1480 m/s
- Amplitude range of hearing (humans)
 - Threshold of audibility: 0.00002 N/m^2
 - Threshold of feeling (or pain!): 200 N/m²
- Frequency range of hearing
 - humans: 20 20 000 Hz
 - dogs: 20 45 000 Hz
 - beluga whale: 1000 123 000 Hz
- Period of lowest and highest audible frequencies
 - $-1/20 \; \mathrm{Hz} = 0.05 \; \mathrm{s} \qquad 1/20 \; 000 \; \mathrm{Hz} = 0.05 \; \mathrm{ms}$
- Shortest audible wave
 - -340/20000=1.7cm
- Longest audible wave
 - -340/20 = 17 m

Sound Summary

- Sound waves are mechanical longitudinal (compression) waves.
- A disturbance of a source (such as vibrating objects) creates an initial region of compression or high pressure.
- When the source vibrates, alternating regions of low and high pressure are produced in the surrounding air, called *rarefactions* and *compressions* respectively.
- The alternating pressure propagates from the source, through a medium, before reaching our ears.

