What is Sound?

If a tree falls in a forest and no one is there to hear it, does it make sound?

Figure 1: A mime in the forest.

Sound and Vibration

• The word sound is used to describe both:

1. an auditory sensation in the ear

2. the disturbance in a medium that causes an auditory sensation

• Nearly all objects will vibrate when disturbed.

• Sound is the result of a wave created by a disturbance, that propagates through a medium from one location to another.

The Science of Sound

• Acoustics is the science that deals with the quantifiable measure of the production, control, transmission and reception of sound.

 — encompasses disciplines such as physics, engineering, psychology, audiology, speech, architecture, neuroscience, music and more!

• Psychoacoustics is the study of the way humans perceive sounds.

 — things are sometimes different than they sound or appear.

 — internal representation can be quite different from the physical stimulus on the ear (or the retina).

 — consider a visual example of two tables (on the next slide).
Two Tables

- Describe the image below; are the tables different?

Removing Cognitive Interpretation

- Turning off the interpretation of “tables in space”, we see two parallelograms of identical size and shape.

What is a wave?

- A wave is a disturbance or oscillation that travels from one location to another over a period of time.

Waves carry information/energy from one point to another—the medium in which they propagate is not transported!

- There are two main types of waves:
 1. Mechanical: waves propagate through a medium.
 2. Electromagnetic: wave propagation does not require a medium (they can travel in a vacuum).

- Which kind of wave is sound?
Direction of particle displacement

- Depending on the direction of its oscillations, a mechanical wave can be:
 1. **Longitudinal**: Particle displacement is parallel to the direction of wave propagation.

 ![Image](Click image for animation: (Courtesy of Dr. Dan Russell, Kettering University))

 2. **Transverse**: Particle displacement is perpendicular to the direction of wave propagation.

 ![Image](Click image for animation: (Courtesy of Dr. Dan Russell, Kettering University))

Waveform

- The **waveform** of the sound shows the time evolution of the variations, illustrating:
 - **amplitude**: maximum particle displacement from rest position (Pa or N/m²),
 - **period**: time to complete one cycle (s),
 - **frequency**: number of cycles per second (Hz),
 - **wavelength**: length of one complete cycle (m).

![Waveform Diagram](Image)

Figure 3: Sinewave.

Sound Waves

- Sound waves are **mechanical waves**:
 - a disturbance travelling through a medium
 - transports energy from one location to another
- Sound waves travel in solids, liquid, or gas.
- In fluids (liquid or gas), sound waves are longitudinal (compression) waves.
- **No material is transported as a result of mechanical waves.**

Speed of Sound

- What is the approximate speed of sound in
 1. air? approx. 340 m/s.
 2. water? approx. 1,484 m/s.
 3. vacuum?
- Speed of sound is dependent on medium’s
 1. density / compressibility (inversely related)
 2. stiffness (solids)
 3. temperature (fluids)
- Sound will travel faster in
 - solids than in liquids because solids are more difficult to compress;
 - liquids than gases because liquids are more difficult to compress.
Hot chocolate effect (Frank Crawford 1982)

- Click on youtube video: [link]
 - frequency of sound heard from tapping the bottom of the cup of hot cocoa is a function of
 1. speed of sound;
 2. wavelength.
 - upon initial stirring of cocoa, sound is transported via bubbles (gas) in the liquid, thus **reducing the speed of sound** and lowering the frequency;
 - as bubbles clear, **sound travels faster** in the liquid and the frequency increases.

Properties of Sound Waves

- Speed of sound
 - in air: 340 m/s
 - in water: 1480 m/s
- Amplitude range of hearing (humans)
 - Threshold of audibility: 0.00002 N/m²
 - Threshold of feeling (or pain!): 200 N/m²
- Frequency range of hearing
 - humans: 20 - 20 000 Hz
 - dogs: 20 - 45 000 Hz
 - beluga whale: 1000 - 123 000 Hz
- Period of lowest and highest audible frequencies
 - 1/20 Hz = 0.05 s 1/20 000 Hz = 0.05 ms
- Shortest audible wave
 - 340/20000 = 1.7 cm
- Longest audible wave
 - 340/20 = 17 m

Sound Summary

- Sound waves are mechanical longitudinal (compression) waves.
- A disturbance of a source (such as vibrating objects) creates an initial region of compression or high pressure.
- When the source vibrates, alternating regions of low and high pressure are produced in the surrounding air, called **rarefactions** and **compressions** respectively.
- The alternating pressure propagates from the source, through a medium, before reaching our ears.