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Adding Sinusoids at Different
Frequencies
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Figure 1: Adding 2 sinusoids at different frequencies.

• When adding sinusoids at different frequencies, the
resulting signal is no longer sinusoidal.

• But is it (the visible wave) periodic?
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A Non-Sinusoidal Periodic Signal

• If the frequencies of the added sinusoids are integer
multiples of the fundamental, the resulting signal will
be periodic.
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Figure 2: Adding sinusoids at 3, 6, 9 Hz produces a periodic signal at 3 Hz.

• Sinusoidal components, or partials that are integer
multiples of a fundamental are calle harmonics.
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Spectrum: Viewing in the Frequency
Domain

• When viewing in the frequency domain, a “spike” at a
frequency indicates there is a sinusoid in the signal at
that frequency.
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Figure 3: Adding sinusoids at 5, 10, 15 Hz in both time and frequency domain.

• The height of the spike indicates the amplitude—all
sinusoids here have a peak amplitude of 1.

• The harmonic relationship between the partials can be
seen by the even spacing between the “spikes”.
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Standard Periodic Waveforms

• square, triangle and sawtooth by adding sinusoids.
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Table 1: Standard Waveforms Synthesized by Adding Sinusoids

Type Harmonics Amplitude Phase (cos) Phase (sin)

square n = [1, 3, 5, ..., N ] 1/n −π/2 0

triangle n = [1, 3, 5, ..., N ] 1/n2 0 π/2

sawtooth n = [1, 2, 3, ..., N ] 1/n −π/2 0
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Spectra of Standard Waveforms
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Figure 4: Spectra of complex waveforms
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Harmonics and Pitch

• Notice that even though these new waveforms contain
more than one frequency component, they are still
periodic.

• Because each of these frequency components are
integer multiples of some fundamental frequency,
they are called harmonics.

• Signals with harmonic spectra have a fundamental
frequency and therefore have a periodic waveform

(the reverse is, of course, also true).

• Pitch is our subjective response to the fundamental

frequency.

• The relative amplitudes of the harmonics

contribute to the timbre of a sound, but do not
necessarily alter the pitch.

• harmocity.pd
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Missing Fundamental
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• Listen to:

– square wave: squaref0.wav:

– square wave, NO fundamental: squareNOf0.wav:

• Does the sense of pitch change? How about timbre?
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http://musicweb.ucsd.edu/~trsmyth/pdpatches175/harmonicity.pd
http://musicweb.ucsd.edu/~trsmyth/sounds175/squaref0.wav
http://musicweb.ucsd.edu/~trsmyth/sounds175/squareNOf0.wav


Inharmonicity

• Generally, inharmonic overtones lack a clear sense of
pitch (difficult to hum).

• The perception of pitch

– may vary with individuals;

– tends to be clearer when notes are played in
succession (particularly with inharmonic tones).

• Listen to:

– bellsclip.wav: bell in isolation—pitch?

– bells.wav: bells in melodic context—pitch?

• The context allows us to focus on the change in notes
rather than on any one note itself.
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Clarinet Analysis

• The (steady-state) tone of clarinet, mostly
closed-open, is shown in time and frequency domain.
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Figure 5: Frequency analysis of a clarinet note.

• Summing sinusoids at 145, 433, 732, ..., can
approximate a steady-state synthesis of the clarinet:

– clarOrigNormalized.ff.D3.wav

– clarAttackRemoved.wav (steady state)

– clarSynth.wav (single amplitude envelope)
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Harmonicity and Pitch

Tenor Saxophone:

9.075 9.08 9.085 9.09
−0.1

−0.05

0

0.05

0.1

0.15

time (s)

a
m

p
lit

u
d
e

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

frequency (Hz)

m
a
g
n
it
u
d
e

Japanese Bell:
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Snare Drum:
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Thunder:
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Pitch and Frequency

• Listeners usually compare tones on the basis of the
musical interval separating them: m3, P5, P8 etc.

• An octave (P8) corresponds to a doubling
of frequency.

• There is a nonlinear relationship between pitch
perception and frequency in Hz:

– an octave above 220 Hz is an increase of 220 Hz;

– an octave above 440 Hz is an increase of 440 Hz.

• In equal-tempered tuning, there are 12 evenly spaced
tones in an octave, called semi-tones:

– The frequency n semitones above A440 is

440× 2n/12 Hz.

– The frequency n semitones below A440 is

440× 2−n/12 Hz.

• pitchFreq.pd
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http://musicweb.ucsd.edu/~trsmyth/sounds175/bellsclip.wav
http://musicweb.ucsd.edu/~trsmyth/sounds175/bells.wav
http://musicweb.ucsd.edu/~trsmyth/sounds/clarOrigNormalized.ff.D3.wav
http://musicweb.ucsd.edu/~trsmyth/sounds/clarAttackRemoved.wav
http://musicweb.ucsd.edu/~trsmyth/sounds/clarSynth.wav
http://musicweb.ucsd.edu/~trsmyth/sounds/tenorSaxMiddleE.wav
http://musicweb.ucsd.edu/~trsmyth/sounds/japaneseBell.wav
http://musicweb.ucsd.edu/~trsmyth/sounds/snare2.wav
http://musicweb.ucsd.edu/~trsmyth/sounds/thunder.wav
http://musicweb.ucsd.edu/~trsmyth/pdpatches175/pitchFreq.pd


Beat Notes

• What happens when we add two frequencies close in
value?
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• The waveform shows a periodic, low frequency

amplitude envelope superimposed on a higher
frequency sinusoid creating a beat note.

• This can be explained by the Cosine Product formula:

cos(a) cos(b) =
cos(a + b) + cos(a− b)

2

• beat.pd
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http://musicweb.ucsd.edu/~trsmyth/sounds/beat.wav
http://musicweb.ucsd.edu/~trsmyth/pdpatches175/beat.pd

