Music 175: Timbre

Tamara Smyth, trsmyth@ucsd.edu
Department of Music,
University of California, San Diego (UCSD)

May 9, 2019
Timbre

• **Timbre:**

  That quality of a sound that distinguishes it from other sounds having the same pitch and loudness.

• All quantifiable aspects of a sound contribute to timbre, but the most important is the final perception of the listener.

• Timbre is a result of a sound source, but can also be affected by our own listening apparatus—and critical bands.

• Important timbral factors:
  
  – average spectral shape (spectral rolloff of monotonically decreasing spectra)
  – “bumpy” spectra (formants)
  – “holy” spectra (missing harmonics)
  – time variation
Average Spectral Shape

- **Rolloff**: how rapidly the energy falls off as you go into the higher partials/harmonics.

- See rolloff.m: examples showing harmonic intensity falling off by 0 dB, 3 dB, 6 dB, 9 dB, and 12 dB per octave (respectively, from bottom to top).

![Figure 1: Spectral rolloff.](image-url)
Monotonically Decreasing Spectra

- Listen progressively—they sound less bright.
- 0 dB/oct: harsh and buzzy sound
  - like the waveform near the player’s mouth (or reed) in an oboe.
- 6 dB/oct: sawtooth wave—what happens when we increase the harmonics?
  - like a bowed string at the point of bowing—bow pulls the string sideways while they’re stuck together, then eventually the string breaks away and slips back.
- 12 dB / oct: a smoother sound.
- 3-9 dB /oct most musically interesting.
- The greater the negative slope of spectral rolloff, the smoother the waveform, and the less bright/buzzy the sound.
- How does average spectrum effect timbre?
  - consider equal loudness curves to determine which spectral components are most important.
Formants

- Another important class of spectra are those that contain formants (peaks in the spectral envelope).

![Spectra of different voiced vowel sounds: bart, bat, food, beet.](image)

- Notice 3 principal formants characteristic of a vowel.
- Listen to aah.wav, ee.wav, eh.wav
Musical Instrument Formants

• The violin has many more formants than the human voice, though they don’t change in time (as do those in the voice).

![Violin spectrum](image)

Figure 3: Violin spectrum, beginning, middle and end of a note.

• Woodwinds have fewer formants than the human voice, but they are strong and perceptually important.

• If a formant moves with pitch, the waveshape is (relatively) constant with pitch (can sound artificial).

• Fixed-frequency formants will have a spectrum that changes with pitch (potentially more interesting).
Missing Harmonics

• See holytones.m

• spectrum 1: 24 successive harmonics, with a rolloff of 3dB/oct.

• spectrum 4: the first 6 harmonics are present: 7, and 9 are left out.

• Why omit more higher harmonics than lower?
  – Critical band is 100 at low frequencies
  – changes gradually to around 20% of the frequency (minor 3rd) at higher frequencies

• If 2 sinusoids of the spectrum are
  – separated by several CBs, they don’t interact and can be heard separately.
  – closer they are in frequency, they sound more fused.
  – within a CB, they sound harsh.

• Successive lower harmonics of low pitches are separated by more than a CB.
• The higher the harmonic number, the closer the harmonic spacing in CBs.

• spectrum 7: higher partials are spaced more than a CB apart (holy)

• spectrum 8: same number of partials as 7, but higher partials are deliberately moved closer together

• Violin tends to approximate such an effect:
  – coupling between string and soundboard rises and falls rapidly with frequency
  – valleys tend to eliminate higher harmonics that are very close in frequency

• Why holy tones 5, 6, and 7?
  – leaving out partials produces a coloration—may have similar “holiness” but still sound different because different partials are omitted.

• Spectrum 9 has a distinctive “octavely” quality.

• Organs use this effect:
  – different holy tones are produced using a mixture of an 8-foot stop, a 4-foot stop, and a 2-foot stop.
  – the 4-foot (an octave up) and the 2-foot (two octaves up) stops add higher harmonics, at two
and four times the harmonic spacings of the 8-foot stop.

– Organ demonstration: [Click to listen]

• Orchestration:

  – doubling an instrument doubles a harmonic at one or two octaves above.
  
  – Bolero (Ravel) with trumpet and flute in octaves. [Click to listen]
  
  – La Mer (Debussy) with trumpet and english horn in unison [Click to listen]
Time Variation in Sounds

- Amplitude envelopes: rapid rise and slow falls give a struck or plucked sound.

- Vibrato:
  - Voice: Maria Callas: Casta diva (1:20) [Click to listen]
  - instruments usually have vibrato/tremelo due to coupling of human performer.
  - Violin: [Click to Listen] (start at 25s)
  - Leslie speaker: [Click to listen]
  - Vibrato in theremin: [Click to listen]

- The wah-wah effect:
  - similar to vibrato, except it is higher resonances are gliding periodically.
  - Trumpet (different mutes): [Click to listen]
  - Miles Davis uses a wah-wah pedal (check out 1:00): [Click to listen]
  - Bon Jovi, Livin’ on a prayer (talk box): [Click to listen]
• Yodeling:
  – exaggerated breaks between chest and head registers
  – Click to listen
  – Click to listen—Franzl Lang
Timbre Space

- Grey used multidimensional scaling to define a "timbre space".
- Musical instrument are laid out by similarity.

Figure 4: Grey’s Timbre Space.
Multidimensional Scaling

• Timbre perception research looks at salient features (dimensions) of classes of sound.

• Timbre is a multidimensional attribute of sound.

• Multidimensional Scaling:
  – a means of visualizing similarity between data points (e.g. as contained in a distance matrix);
  – placing data in N-dimensional space, preserving distances between data.
Grey’s experiment

• Grey’s two (2) psychological distance measurements:
  1. judgement of timbral similarity:
     \[ d = \frac{1}{\text{similarity}} \]
  2. accuracy in associating specific names to notes:
     \[ d \propto \text{number of confusions} \]

• Stimulus notes were
  1. equalized for pitch, loudness, and duration;
  2. synthesized from recording, allowing for:
     – alteration of frequency, amplitude, and duration.
     – known physical properties (synthesis parameters);
     – control over complexity of physical makeup.

• Grey’s experiment consisted of:
  – 35 data sets (musical subjects)
  – 16 different instrument recordings player:
    * E-flat (above middle C)
    * duration 280-400 ms
* 240 trials: $n(n - 1)$ possible pairs of $n = 16$ notes.

– listener’s similarity ratings:
  1. 1-10: very dissimilar
  2. 11-20: average level of similarity
  3. 21-30: very similar