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Primary Mechanical Vibrators

e With a model of a wind instrument body, a model of

the mechanical “primary” resonator is needed for a
complete instrument.

e Many sounds are produced by coupling the

mechanical vibrations of a source to the resonance of
an acoustic tube:

— In vocal systems, air pressure from the lungs
controls the oscillation of a membrane (vocal

fold), creating a variable constriction through
which air flows.

— Similarly, blowing into the mouthpiece of a clarinet
will cause the reed to vibrate, narrowing and
widening the airflow aperture to the bore.
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Mass-spring System

e Before modeling this mechanical vibrating system,
let’'s review some acoustics, and mechanical vibration.

e The simplest oscillator is the mass-spring system:

— a horizontal spring fixed at one end with a mass
connected to the other.
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Figure 1: An ideal mass-spring system.

e The motion of an object can be describe in terms of

its
1. displacement x(t)
2. velocity v(t) =
. velocity v(t) = —
g dt
dv d*x

3. acceleration a(t) = 7T
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Equation of Motion

e The force on an object having mass m and
acceleration a may be determined using Newton's
second law of motion

F' = ma.

e There is an elastic force restoring the mass to its
equilibrium position, given by Hooke's law

F=—-Kz,

where K is a constant describing the stiffness of the
spring.

e The spring force is equal and opposite to the force
due to acceleration, yielding the equation of motion:

d*x
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Solution to Equation of Motion

e The solution to
d*x
mﬁ — —Kﬂf,
is a function proportional to its second derivative.
e This condition is met by the sinusoid:

r = Acos(wyt + @)

dx
— = —wpAsin(wpt + @)
(éit
d°x
T = —wj A cos(wgt + @)
e Substituting into the equation of motion yields:
d*x
m— = —Kux
dt? o ’
—wyAcosfwt+ @) = ——Acos(wt + @),
m
showing that the natural frequency of vibration is
K
Wy = —.
m
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Motion of the Mass Spring

e \We can make the following inferences from the
oscillatory motion (displacement) of the mass-spring
system written as:

x(t) = A cos(wot)

— Energy is conserved, the oscillation never decays.
— At the peaks:

x the spring is maximally compressed or stretched:;
* the mass is momentarily stopped as it is
changing direction;
— At zero crossings,
* the spring is momentarily relaxed (it is neither
compressed nor stressed), and thus holds no PE
x all energy is in the form of KE.
— Since energy is conserved, the KE at zero crossings

is exactly the amount needed to stretch the spring
to displacement — A or compress it to +A.
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PE and KE in the mass-spring
oscillator

e All vibrating systems consist of this interplay between
an energy storing component and an energy carrying
(“massy”) component.

e The potential energy PE of the ideal mass-spring
system is equal to the work done! stretching or

compressing the spring:

1
PE = §Kx2,

1
= §KA2 cos?(wot + @).

e The kinetic energy KE in the system is given by

the motion of mass:
1
KE = —mv?,
2
1

= —mwﬂolig sin?(wot + @)

2

1
= §KA2 sin”(wot + ).

Lwork is the product of the average force and the distance moved in the direction of the force
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Conservation of Energy

e The total energy of the ideal mass-spring system is

constant:
EF = PE+KE
1 2 (.2 2
= §KA (sin*(wot + @) + cos™(wot + )
1
= —KA*
2
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Figure 2: The interplay between PE and KE.
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Other Simple Oscillators—Pendulum

e Besides the mass-spring, there are other examples of
simple harmonic motion.

e A pendulum: a mass m attached to a string of
length [ vibrates in simple harmonic motion, provided
that ©z < [.

Figure 3: A simple pendulum.

e The frequency of vibration is

L /g
f — % 77
where ¢ is the acceleration due to gravity.

e According to this equation, would changing the mass
change the frequency?
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Other Simple Oscillators—Helmholtz
Resonator

e A Helmholtz Resonator: The mass of air in the
neck serves as a piston, and the larger volume as the

spring.

e The resonant frequency of the Helmholtz resonator is

given by
c a

fo= 2\ VL’
where a is the area of the neck, V' is the volume, L is
the length of the neck and c is the speed of sound.
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Damped Vibration

e In a real system, mechanical energy is lost due to
friction and other mechanisms causing damping.

e Unless energy is reintroduced into the system, the
amplitude of the vibrations with decrease with time.

e A change in peak amplitude with time is called an
envelope, and if the envelope decreases, the vibrating
system is said to be damped.
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Figure 4: A damped sinusoid.
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Mass-spring-damper system

e Damping of an oscillating system corresponds to a
loss of energy or equivalently, a decrease in the
amplitude of vibration.

K
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Figure 5: A mass-spring-damper system.

e The damper is a mechanical resistance (or viscosity)
and introduces a drag force F;. typically proportional
to velocity,

F, = —Rv

dx
p— —R—
dt’

where R is the mechanical resistance.
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Damped Equation of Motion

e The equation of motion for the damped system is
obtained by adding the drag force into the equation of
motion:

d?x dx
ﬁ -+ Rd— -+ l<$ = O
or alternatively
d?x dx
W"—Q(Xd——l—wgﬁlﬁ_o,

where o = R/2m and wj = K/m.

e The damping in a system is often measured by the
quantity 7, which is the time for the amplitude to
decrease to 1/e:
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The Solution to the Damped Vibrator

e The solution to the system equation

has the form
r = A(t) cos(wgt + ¢).
where A(t) is the amplitude envelope
Alt) = e ™ = e,

and the natural frequency wy

wg = \/wi — a?,

is lower than that of the ideal mass-spring system

K
Wy = —.
m
e Peak A and ¢ are determined by the initial

displacement and velocity.
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Systems with Several Masses

e When there is a single mass, its motion has only one
degree of freedom and one natural mode of vibration.

e Consider the system having 2 masses and 3 springs:

= I1 %’56‘2
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Figure 6: 2-mass 3-spring system.

e The system will have two “normal” independent
modes of vibration:

1. one in which masses move in the same direction,

with frequency
1 |K
fi=o-\
TV m

2. one in which masses move in different directions

with frequency
1 /3K
fa=5_y
TV m

(assuming equal masses and springs).
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System Equations for Two
Spring-Coupled Masses

a —>> I PxQ

m AN m

K K K

Figure 7: A short section of a string.

e The extensions of the left, middle and right springs
are 1, Ty — T1, and —x9, respectively.

e When a spring is extended by x, the mass attached to
the

— left experiences a positive horizontal restoring
force F, = Kux;

— right experiences an equal and opposite force
F,=—-Kuz,

where K is the spring constant.

e [he equation of motion for the displacement of the
first mass:

mxy = —Kx1 + K(ZEQ — 5171),
and the second mass,
mio = —K(xo — x1) + K(—x3).
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Additional Modes

e \When modes are independent, the system can vibrate
in one mode with minimal excitation of another.

e Unless constrained to one-dimension, the masses can
also move transversely (at right-angles to the springs).

e An additional mass adds an additional mode of
vibration.

e An N-mass system has N modes per degree of
freedom.

e As N gets very large, it becomes convenient to view
the system as a continuous string with a uniform
mass density and tension.
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Figure 8: Increasing the number of masses (Science of Sound).
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Forced (Driven) Vibration

e Getting they system to vibrate at any single mode of
vibration requires exciting, or driving the system at
the desired mode.

e See Dan Russell’s site: The forced harmonic oscillator

e \When a simple harmonic oscillator is driven by an
external force F'(t), the equation of motion becomes

mi + Rt + Kz = F(t).

e The driving force may have harmonic time
dependence, it may be impulsive, or it can be a
random function of time (noise).

Music 206: Mechanical Vibration 18



Phase of Driven Vibration

e The force driving an oscillation can be illustrated by
holding a slinky in the vertical direction.

e Move the hand up and down slowly:

— At low f3,, both the hand and the mass move in
the same direction, and the spring hardly stretches
at all.

e Increasing f;, makes it harder to move mass, and it
lags behind the driving force.

e At resonance f, = fo:

— the mass is 1/4 cycle behind the hand.

— the amplitude is at its maximum.

e The higher the @ (quality factor), of the vibrating
system, the more abrupt the transition in phase.
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Resonance

e At resonance, there is maximum transfer of energy
between the hand and the mass-spring system.

e Plotting amplitude A with respect to f;, shows a
curve that is almost symmetrical about its peak
A, ar, 1.€., 1t has a bandwidth measured a distance
down from A,,,..

Magnitude (dB)

1000 1500 2000
Driving Frequency, Hz

Figure 9: A Resonator shows peak amplitude when the driving force is equal to the system’s
natural frequency.

e Both the peak A,,,, the bandwidth A f depend on
the damping in the system:
1. heavily damped: Af is large and A, is small.

2. little damping: Af is small and A,,,. is large,
creating a sharp resonance.
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Quality Factor and Bandwidth

e The bandwidth of the resonance is typically described

Jo

Af

e A high-@ has a sharp resonance, and a low-@Q has a
broad resonance curve.

using the quantity () = for quality factor.

e For a vibrator set into motion and left to vibrate
freely, its decay time is proportional to the @ of its
resonance.

e In terms of our mechanical system, given the

resistance &« = —, the quality factor is:
2m

_ %o
Q_Qoz'
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How to Discretize?

e The one-sided Laplace transform of a signal z(?) is
defined by

X(s) =LAz} = /Ooox(t)e_Stdt

where t is real and s = 0 + jw is a complex variable.

e The differentiation theorem for Laplace transforms
states that

d
gx(t) < sX(s)

where z(t) is any differentiable function that
approaches zero as t goes to infinity.

e The transfer function of an ideal differentiator is
H(s) = s, which can be viewed as the Laplace
transform of the operator d/dt.

e Given the equation of motion
mi + Rx + Kx = F(t),
the Laplace Transform is

s°X(8) +2asX(s) +wiX(s) = F(s).
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Finite Difference

e The finite difference approximation (FDA) amounts to
replacing derivatives by finite differences, or

d Ly x(t) —x(t—=9)  x(nT) - z|(n—1)T]
g7 = lim 5 = T |

e The z transform of the first-order difference operator
is (1 — 2z~ 1)/T. Thus, in the frequency domain, the
finite-difference approximation may be performed by
making the substitution

1—2z1
\

s —
T
e [ he first-order difference is first-order error accurate

in 1. Better performance can be obtained using the
bilinear transform, defined by the substitution

. ] — 27t 1 _2
> C T where C—T.
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FDA of Equation of Motion
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Pressure Controlled Valves

e Returning now to our model of wind instruments....

e Blowing into an instrument mouthpiece creates a
pressure difference across the surface of the reed.

e When the reed oscillates, it creates and alternating
opening and closure to the bore, allowing airflow
entry during the open phase and cutting it off during
the closed phase.

e The effect, is often seen as a periodic train of
pressure pulses into the bore.

e Sound sources of this kind are referred to as
pressure-controlled valves and they have been
simulated in various ways to create musical synthesis
models and vocal systems.
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Classifying Pressure-Controlled Valves

e The method for simulating the reed typically depends
on whether an additional upstream or downstream
pressure causes the corresponding side of the valve to
open or close further.

e As per Fletcher, the couplet (o1, 03) may be used
describe the upstream and downstream valve
behaviour, respectively.

e A o, value of

— +1 indicates an opening of the valve,
— -1 indicates a closing of the value,

on side n in response to a pressure increase.
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Three simple configurations of PC valves

P1

3) (+,+)

D1 D2

U

Figure 10: Simplified models of three common configurations of pressure-controlled valves.

1. (—,+): the valve is blown closed (as in woodwind
instruments or reed-pipes of the pipe organ).

2. (4, —): the valve is blown open (as in the simple
lip-reed models for brass instruments, the human
larynx, harmonicas and harmoniums).

3. (4, +): the transverse (symmetric) model where the
Bernoulli pressure causes the valve to close
perpendicular to the direction of airflow.
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Valve Displacement

Figure 11: Geometry of a blown open pressure-controlled valve showing effective areas
Slu 527 S3'

e Consider the double reed in a blown open
configuration.

e Surface S| sees an upstream pressure p;, surface S5
sees the downstream pressure p, (after flow
separation), and surface S5 sees the flow at the
interior of the valve channel and the resulting
Bernoulli pressure.
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Valve Driving Force

e With these areas and the corresponding geometric
couplet defined, the motion of the valve opening x(t)
is governed by

d*x dx

mW—FQm’yE—I—k(CC—CC()) = Ulpl(Sl‘i_Sg)"_O'QpQSQ,

where v is the damping coefficient, x( the equilibrium
position of the valve opening in the absence of flow,
K the valve stiffness, and m the reed mass.

e The couplet therefore, is very useful when evaluating
the force driving a mode of the vibrating valve.
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Discretizing Valve Displacement

e The Laplace Transform of the valve displacement:
ms°X (s) +mgsX(s) + KX(s) — Kxg = F(s).

e The bilinear transform, defined by the substitution
1 — 21 1 2
s C where ¢ = —
1+ 271 T’

X(z) 1427427
F(z)+kzy ag+azt +axz?

yields

where

ag = mc® +mgc+ k,
ar = —2(mc* — k),

as = mc> —mge + k.

e The corresponding difference equation is

2(n) = aiO[Fk(m L 2F(n — 1)+ Fu(n — 2)) —

ax(n — 1) — axw(n — 2],
where Fj(n) = F(n) + k.
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Volume Flow

kil

Figure 12: The clarinet Reed.

e The steady flow through a valve is determined based
on input pressure p; and the resulting output pressure

D2.

e The difference between these two pressure is denoted
Ap and is related to volume flow via the stationary
Bernoulli equation

where A is the cross section area of the air column
(and dependent on the opening ).
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Volume Flow as a Function of Pressure Difference
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Figure 13: The reed table.
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