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Primary Mechanical Vibrators

• With a model of a wind instrument body, a model of
the mechanical “primary” resonator is needed for a
complete instrument.

• Many sounds are produced by coupling the
mechanical vibrations of a source to the resonance of
an acoustic tube:

– In vocal systems, air pressure from the lungs
controls the oscillation of a membrane (vocal
fold), creating a variable constriction through
which air flows.

– Similarly, blowing into the mouthpiece of a clarinet
will cause the reed to vibrate, narrowing and
widening the airflow aperture to the bore.
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Mass-spring System

• Before modeling this mechanical vibrating system,
let’s review some acoustics, and mechanical vibration.

• The simplest oscillator is the mass-spring system:

– a horizontal spring fixed at one end with a mass
connected to the other.
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Figure 1: An ideal mass-spring system.

• The motion of an object can be describe in terms of
its

1. displacement x(t)

2. velocity v(t) =
dx

dt

3. acceleration a(t) =
dv

dt
=

d2x

dt2
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Equation of Motion

• The force on an object having mass m and
acceleration a may be determined using Newton’s

second law of motion

F = ma.

• There is an elastic force restoring the mass to its
equilibrium position, given by Hooke’s law

F = −Kx,

where K is a constant describing the stiffness of the
spring.

• The spring force is equal and opposite to the force
due to acceleration, yielding the equation of motion:

m
d2x

dt2
= −Kx.
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Solution to Equation of Motion

• The solution to

m
d2x

dt2
= −Kx,

is a function proportional to its second derivative.

• This condition is met by the sinusoid:

x = A cos(ω0t + φ)
dx

dt
= −ω0A sin(ω0t + φ)

d2x

dt2
= −ω2

0A cos(ω0t + φ)

• Substituting into the equation of motion yields:

m
d2x

dt2
= −Kx,

−ω2
0✭✭✭✭✭✭✭✭✭✭✭✭✭

A cos(ω0t + φ) = −
K

m✭✭✭✭✭✭✭✭✭✭✭✭✭

A cos(ω0t + φ),

showing that the natural frequency of vibration is

ω0 =

√

K

m
.
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Motion of the Mass Spring

• We can make the following inferences from the
oscillatory motion (displacement) of the mass-spring
system written as:

x(t) = A cos(ω0t)

– Energy is conserved, the oscillation never decays.

– At the peaks:

∗ the spring is maximally compressed or stretched;

∗ the mass is momentarily stopped as it is
changing direction;

– At zero crossings,

∗ the spring is momentarily relaxed (it is neither
compressed nor stressed), and thus holds no PE

∗ all energy is in the form of KE.

– Since energy is conserved, the KE at zero crossings
is exactly the amount needed to stretch the spring
to displacement −A or compress it to +A.
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PE and KE in the mass-spring
oscillator

• All vibrating systems consist of this interplay between
an energy storing component and an energy carrying
(“massy”) component.

• The potential energy PE of the ideal mass-spring
system is equal to the work done1 stretching or
compressing the spring:

PE =
1

2
Kx2,

=
1

2
KA2 cos2(ω0t + φ).

• The kinetic energy KE in the system is given by
the motion of mass:

KE =
1

2
mv2,

=
1

2✟
✟
✟
✟✟✯
K

mω2
0A

2 sin2(ω0t + φ)

=
1

2
KA2 sin2(ω0t + φ).

1work is the product of the average force and the distance moved in the direction of the force
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Conservation of Energy

• The total energy of the ideal mass-spring system is
constant:

E = PE +KE

=
1

2
KA2

(

sin2(ω0t + φ) + cos2(ω0t + φ)
)

=
1

2
KA2
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Figure 2: The interplay between PE and KE.
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Other Simple Oscillators—Pendulum

• Besides the mass-spring, there are other examples of
simple harmonic motion.

• A pendulum: a mass m attached to a string of
length l vibrates in simple harmonic motion, provided
that x ≪ l.

x

l

m

Figure 3: A simple pendulum.

• The frequency of vibration is

f =
1

2π

√

g

l
,

where g is the acceleration due to gravity.

• According to this equation, would changing the mass
change the frequency?
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Other Simple Oscillators—Helmholtz
Resonator

• A Helmholtz Resonator: The mass of air in the
neck serves as a piston, and the larger volume as the
spring.

m

V

L

S

• The resonant frequency of the Helmholtz resonator is
given by

f0 =
c

2π

√

a

V L
,

where a is the area of the neck, V is the volume, L is
the length of the neck and c is the speed of sound.
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Damped Vibration

• In a real system, mechanical energy is lost due to
friction and other mechanisms causing damping.

• Unless energy is reintroduced into the system, the
amplitude of the vibrations with decrease with time.

• A change in peak amplitude with time is called an
envelope, and if the envelope decreases, the vibrating
system is said to be damped.
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Figure 4: A damped sinusoid.
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Mass-spring-damper system

• Damping of an oscillating system corresponds to a
loss of energy or equivalently, a decrease in the
amplitude of vibration.

m

x

K

Figure 5: A mass-spring-damper system.

• The damper is a mechanical resistance (or viscosity)
and introduces a drag force Fr typically proportional
to velocity,

Fr = −Rv

= −R
dx

dt
,

where R is the mechanical resistance.
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Damped Equation of Motion

• The equation of motion for the damped system is
obtained by adding the drag force into the equation of
motion:

m
d2x

dt2
+ R

dx

dt
+Kx = 0,

or alternatively

d2x

dt2
+ 2α

dx

dt
+ ω2

0x = 0,

where α = R/2m and ω2
0 = K/m.

• The damping in a system is often measured by the
quantity τ , which is the time for the amplitude to
decrease to 1/e:

τ =
1

α
=

2m

R
.
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The Solution to the Damped Vibrator

• The solution to the system equation

dx2

dt2
+ 2α

dx

dt
+ ω2

0x = 0

has the form

x = A(t) cos(ωdt + φ).

where A(t) is the amplitude envelope

A(t) = e−t/τ = e−αt,

and the natural frequency ωd

ωd =
√

ω2
0 − α2,

is lower than that of the ideal mass-spring system

ω0 =

√

K

m
.

• Peak A and φ are determined by the initial
displacement and velocity.
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Systems with Several Masses

• When there is a single mass, its motion has only one
degree of freedom and one natural mode of vibration.

• Consider the system having 2 masses and 3 springs:

x2

K K

m

a

m

K

x1

Figure 6: 2-mass 3-spring system.

• The system will have two “normal” independent
modes of vibration:

1. one in which masses move in the same direction,
with frequency

f1 =
1

2π

√

K

m

2. one in which masses move in different directions

with frequency

f2 =
1

2π

√

3K

m

(assuming equal masses and springs).
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System Equations for Two
Spring-Coupled Masses
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Figure 7: A short section of a string.

• The extensions of the left, middle and right springs
are x1, x2 − x1, and −x2, respectively.

• When a spring is extended by x, the mass attached to
the

– left experiences a positive horizontal restoring
force Fr = Kx;

– right experiences an equal and opposite force
Fr = −Kx,

where K is the spring constant.

• The equation of motion for the displacement of the
first mass:

mẍ1 = −Kx1 +K(x2 − x1),

and the second mass,

mẍ2 = −K(x2 − x1) +K(−x2).

Music 206: Mechanical Vibration 16



Additional Modes

• When modes are independent, the system can vibrate
in one mode with minimal excitation of another.

• Unless constrained to one-dimension, the masses can
also move transversely (at right-angles to the springs).

• An additional mass adds an additional mode of
vibration.

• An N-mass system has N modes per degree of
freedom.

• As N gets very large, it becomes convenient to view
the system as a continuous string with a uniform
mass density and tension.

Figure 8: Increasing the number of masses (Science of Sound).
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Forced (Driven) Vibration

• Getting they system to vibrate at any single mode of
vibration requires exciting, or driving the system at
the desired mode.

• See Dan Russell’s site: The forced harmonic oscillator

• When a simple harmonic oscillator is driven by an
external force F (t), the equation of motion becomes

mẍ +Rẋ +Kx = F (t).

• The driving force may have harmonic time
dependence, it may be impulsive, or it can be a
random function of time (noise).
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Phase of Driven Vibration

• The force driving an oscillation can be illustrated by
holding a slinky in the vertical direction.

• Move the hand up and down slowly:

– At low fh, both the hand and the mass move in

the same direction, and the spring hardly stretches

at all.

• Increasing fh makes it harder to move mass, and it
lags behind the driving force.

• At resonance fh = f0:

– the mass is 1/4 cycle behind the hand.

– the amplitude is at its maximum.

• The higher the Q (quality factor), of the vibrating
system, the more abrupt the transition in phase.
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Resonance

• At resonance, there is maximum transfer of energy
between the hand and the mass-spring system.

• Plotting amplitude A with respect to fh, shows a
curve that is almost symmetrical about its peak
Amax, i.e., it has a bandwidth measured a distance
down from Amax.
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Figure 9: A Resonator shows peak amplitude when the driving force is equal to the system’s
natural frequency.

• Both the peak Amax the bandwidth ∆f depend on
the damping in the system:

1. heavily damped: ∆f is large and Amax is small.

2. little damping: ∆f is small and Amax is large,
creating a sharp resonance.
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Quality Factor and Bandwidth

• The bandwidth of the resonance is typically described

using the quantity Q =
f0
∆f

, for quality factor.

• A high-Q has a sharp resonance, and a low-Q has a
broad resonance curve.

• For a vibrator set into motion and left to vibrate
freely, its decay time is proportional to the Q of its
resonance.

• In terms of our mechanical system, given the

resistance α =
R

2m
, the quality factor is:

Q =
ω0

2α
.
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How to Discretize?

• The one-sided Laplace transform of a signal x(t) is
defined by

X(s)
∆

= Ls{x}
∆

=

∫ ∞

0

x(t)e−stdt

where t is real and s = σ + jω is a complex variable.

• The differentiation theorem for Laplace transforms
states that

d

dt
x(t) ↔ sX(s)

where x(t) is any differentiable function that
approaches zero as t goes to infinity.

• The transfer function of an ideal differentiator is
H(s) = s, which can be viewed as the Laplace
transform of the operator d/dt.

• Given the equation of motion

mẍ +Rẋ +Kx = F (t),

the Laplace Transform is

s2X(s) + 2αsX(s) + ω2
0X(s) = F (s).
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Finite Difference

• The finite difference approximation (FDA) amounts to
replacing derivatives by finite differences, or

d

dt
x(t)

∆

= lim
δ→0

x(t)− x(t− δ)

δ
≈

x(nT )− x[(n− 1)T ]

T
.

• The z transform of the first-order difference operator
is (1− z−1)/T . Thus, in the frequency domain, the
finite-difference approximation may be performed by
making the substitution

s →
1− z−1

T

• The first-order difference is first-order error accurate
in T . Better performance can be obtained using the
bilinear transform, defined by the substitution

s −→ c

(

1− z−1

1 + z−1

)

where c =
2

T
.
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FDA of Equation of Motion
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Pressure Controlled Valves

• Returning now to our model of wind instruments....

• Blowing into an instrument mouthpiece creates a
pressure difference across the surface of the reed.

• When the reed oscillates, it creates and alternating
opening and closure to the bore, allowing airflow
entry during the open phase and cutting it off during
the closed phase.

• The effect, is often seen as a periodic train of
pressure pulses into the bore.

• Sound sources of this kind are referred to as
pressure-controlled valves and they have been
simulated in various ways to create musical synthesis
models and vocal systems.
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Classifying Pressure-Controlled Valves

• The method for simulating the reed typically depends
on whether an additional upstream or downstream
pressure causes the corresponding side of the valve to
open or close further.

• As per Fletcher, the couplet (σ1, σ2) may be used
describe the upstream and downstream valve
behaviour, respectively.

• A σn value of

– +1 indicates an opening of the valve,

– -1 indicates a closing of the value,

on side n in response to a pressure increase.
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Three simple configurations of PC valves
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Figure 10: Simplified models of three common configurations of pressure-controlled valves.

1. (−,+): the valve is blown closed (as in woodwind
instruments or reed-pipes of the pipe organ).

2. (+,−): the valve is blown open (as in the simple
lip-reed models for brass instruments, the human
larynx, harmonicas and harmoniums).

3. (+,+): the transverse (symmetric) model where the
Bernoulli pressure causes the valve to close
perpendicular to the direction of airflow.
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Valve Displacement

S1
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S2
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S1
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Figure 11: Geometry of a blown open pressure-controlled valve showing effective areas
S1, S2, S3.

• Consider the double reed in a blown open
configuration.

• Surface S1 sees an upstream pressure p1, surface S2

sees the downstream pressure p2 (after flow
separation), and surface S3 sees the flow at the
interior of the valve channel and the resulting
Bernoulli pressure.
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Valve Driving Force

• With these areas and the corresponding geometric
couplet defined, the motion of the valve opening x(t)
is governed by

m
d2x

dt2
+2mγ

dx

dt
+k(x−x0) = σ1p1(S1+S3)+σ2p2S2,

where γ is the damping coefficient, x0 the equilibrium
position of the valve opening in the absence of flow,
K the valve stiffness, and m the reed mass.

• The couplet therefore, is very useful when evaluating
the force driving a mode of the vibrating valve.
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Discretizing Valve Displacement

• The Laplace Transform of the valve displacement:

ms2X(s) +mgsX(s) +KX(s)−Kx0 = F (s).

• The bilinear transform, defined by the substitution

s −→ c

(

1− z−1

1 + z−1

)

where c =
2

T
,

yields

X(z)

F (z) + kx0
=

1 + 2z−1 + z−2

a0 + a1z−1 + a2z−2
,

where

a0 = mc2 +mgc + k,

a1 = −2(mc2 − k),

a2 = mc2 −mgc + k.

• The corresponding difference equation is

x(n) =
1

a0
[Fk(n) + 2Fk(n− 1) + Fk(n− 2))−

a1x(n− 1)− a2x(n− 2)],

where Fk(n) = F (n) + kx0.
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Volume Flow
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Figure 12: The clarinet Reed.

• The steady flow through a valve is determined based
on input pressure p1 and the resulting output pressure
p2.

• The difference between these two pressure is denoted
∆p and is related to volume flow via the stationary
Bernoulli equation

U = A

√

2∆p

ρ
,

where A is the cross section area of the air column
(and dependent on the opening x).
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Figure 13: The reed table.
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