Music 206: Mechanical Vibration

Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD)

November 15, 2019

Primary Mechanical Vibrators

- With a model of a wind instrument body, a model of the mechanical "primary" resonator is needed for a complete instrument.
- Many sounds are produced by coupling the mechanical vibrations of a source to the resonance of an acoustic tube:
 - In vocal systems, air pressure from the lungs controls the oscillation of a membrane (vocal fold), creating a variable constriction through which air flows.
 - Similarly, blowing into the mouthpiece of a clarinet will cause the reed to vibrate, narrowing and widening the airflow aperture to the bore.

Mass-spring System

- Before modeling this mechanical vibrating system, let's review some acoustics, and mechanical vibration.
- The simplest oscillator is the mass-spring system:
 - a horizontal spring fixed at one end with a mass connected to the other.

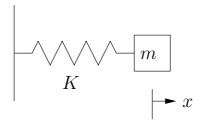


Figure 1: An ideal mass-spring system.

- The motion of an object can be describe in terms of its
 - 1. displacement x(t)

 - 2. velocity $v(t)=\frac{dx}{dt}$ 3. acceleration $a(t)=\frac{dv}{dt}=\frac{d^2x}{dt^2}$

Equation of Motion

ullet The force on an object having mass m and acceleration a may be determined using Newton's second law of motion

$$F = ma$$
.

• There is an elastic force restoring the mass to its equilibrium position, given by *Hooke's law*

$$F = -Kx$$

where K is a constant describing the stiffness of the spring.

• The spring force is equal and opposite to the force due to acceleration, yielding the equation of motion:

$$m\frac{d^2x}{dt^2} = -Kx.$$

Solution to Equation of Motion

• The solution to

$$m\frac{d^2x}{dt^2} = -Kx,$$

is a function proportional to its second derivative.

• This condition is met by the sinusoid:

$$x = A\cos(\omega_0 t + \phi)$$

$$\frac{dx}{dt} = -\omega_0 A\sin(\omega_0 t + \phi)$$

$$\frac{d^2x}{dt^2} = -\omega_0^2 A\cos(\omega_0 t + \phi)$$

Substituting into the equation of motion yields:

$$m\frac{d^2x}{dt^2} = -Kx,$$

$$-\omega_0^2 A \cos(\omega_0 t + \phi) = -\frac{K}{m} A \cos(\omega_0 t + \phi),$$

showing that the natural frequency of vibration is

$$\omega_0 = \sqrt{\frac{K}{m}}.$$

Motion of the Mass Spring

 We can make the following inferences from the oscillatory motion (displacement) of the mass-spring system written as:

$$x(t) = A\cos(\omega_0 t)$$

- Energy is conserved, the oscillation never decays.
- At the peaks:
 - * the spring is maximally compressed or stretched;
 - * the mass is momentarily stopped as it is changing direction;
- At zero crossings,
 - * the spring is momentarily relaxed (it is neither compressed nor stressed), and thus holds no PE
 - * all energy is in the form of KE.
- Since energy is conserved, the KE at zero crossings is exactly the amount needed to stretch the spring to displacement -A or compress it to +A.

PE and KE in the mass-spring oscillator

- All vibrating systems consist of this interplay between an energy storing component and an energy carrying ("massy") component.
- The potential energy PE of the ideal mass-spring system is equal to the work done¹ stretching or compressing the spring:

$$PE = \frac{1}{2}Kx^2,$$

= $\frac{1}{2}KA^2\cos^2(\omega_0 t + \phi).$

• The kinetic energy KE in the system is given by the motion of mass:

$$KE = \frac{1}{2}mv^{2},$$

$$= \frac{1}{2}m\omega_{0}^{2}A^{2}\sin^{2}(\omega_{0}t + \phi)$$

$$= \frac{1}{2}KA^{2}\sin^{2}(\omega_{0}t + \phi).$$

¹work is the product of the average force and the distance moved in the direction of the force

Conservation of Energy

• The total energy of the ideal mass-spring system is constant:

$$E = PE + KE$$

$$= \frac{1}{2}KA^{2} \left(\sin^{2}(\omega_{0}t + \phi) + \cos^{2}(\omega_{0}t + \phi)\right)$$

$$= \frac{1}{2}KA^{2}$$

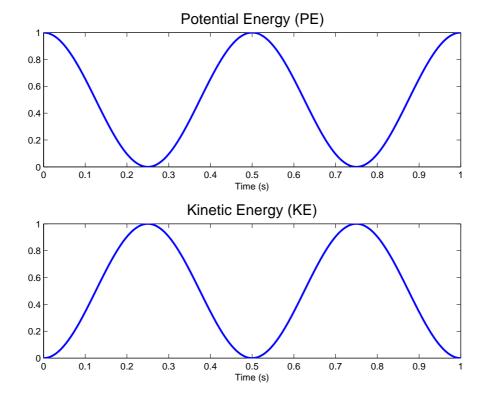


Figure 2: The interplay between PE and KE.

Other Simple Oscillators—Pendulum

- Besides the mass-spring, there are other examples of simple harmonic motion.
- A pendulum: a mass m attached to a string of length l vibrates in simple harmonic motion, provided that $x \ll l$.

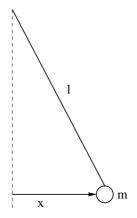


Figure 3: A simple pendulum.

• The frequency of vibration is

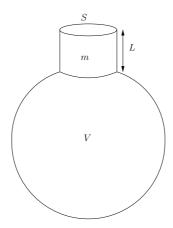
$$f = \frac{1}{2\pi} \sqrt{\frac{g}{l}},$$

where g is the acceleration due to gravity.

 According to this equation, would changing the mass change the frequency?

Other Simple Oscillators—Helmholtz Resonator

• A Helmholtz Resonator: The mass of air in the neck serves as a piston, and the larger volume as the spring.



• The resonant frequency of the Helmholtz resonator is given by

$$f_0 = \frac{c}{2\pi} \sqrt{\frac{a}{VL}},$$

where a is the area of the neck, V is the volume, L is the length of the neck and c is the speed of sound.

Damped Vibration

- In a real system, mechanical energy is lost due to friction and other mechanisms causing *damping*.
- Unless energy is reintroduced into the system, the amplitude of the vibrations with decrease with time.
- A change in peak amplitude with time is called an *envelope*, and if the envelope decreases, the vibrating system is said to be *damped*.

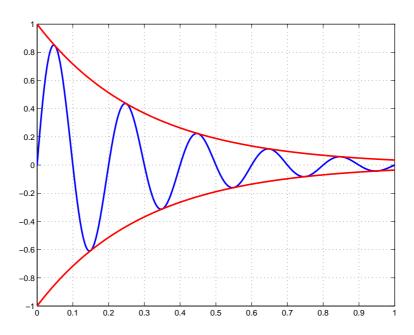


Figure 4: A damped sinusoid.

Mass-spring-damper system

 Damping of an oscillating system corresponds to a loss of energy or equivalently, a decrease in the amplitude of vibration.

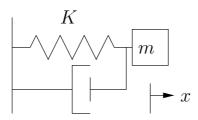


Figure 5: A mass-spring-damper system.

• The damper is a mechanical resistance (or viscosity) and introduces a drag force F_r typically proportional to velocity,

$$F_r = -Rv$$
$$= -R\frac{dx}{dt},$$

where R is the mechanical resistance.

Damped Equation of Motion

 The equation of motion for the damped system is obtained by adding the drag force into the equation of motion:

$$m\frac{d^2x}{dt^2} + R\frac{dx}{dt} + Kx = 0,$$

or alternatively

$$\frac{d^2x}{dt^2} + 2\alpha \frac{dx}{dt} + \omega_0^2 x = 0,$$

where $\alpha = R/2m$ and $\omega_0^2 = K/m$.

• The damping in a system is often measured by the quantity τ , which is the time for the amplitude to decrease to 1/e:

$$\tau = \frac{1}{\alpha} = \frac{2m}{R}.$$

The Solution to the Damped Vibrator

• The solution to the system equation

$$\frac{dx^2}{dt^2} + 2\alpha \frac{dx}{dt} + \omega_0^2 x = 0$$

has the form

$$x = A(t)\cos(\omega_d t + \phi).$$

where A(t) is the amplitude envelope

$$A(t) = e^{-t/\tau} = e^{-\alpha t},$$

and the natural frequency ω_d

$$\omega_d = \sqrt{\omega_0^2 - \alpha^2},$$

is lower than that of the ideal mass-spring system

$$\omega_0 = \sqrt{\frac{K}{m}}.$$

ullet Peak A and ϕ are determined by the initial displacement and velocity.

Systems with Several Masses

- When there is a single mass, its motion has only one degree of freedom and one natural mode of vibration.
- Consider the system having 2 masses and 3 springs:

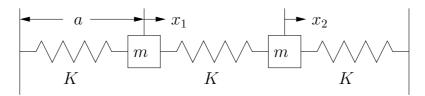


Figure 6: 2-mass 3-spring system.

- The system will have two "normal" independent modes of vibration:
 - 1. one in which masses move in the *same direction*, with frequency

$$f_1 = \frac{1}{2\pi} \sqrt{\frac{K}{m}}$$

2. one in which masses move in *different directions* with frequency

$$f_2 = \frac{1}{2\pi} \sqrt{\frac{3K}{m}}$$

(assuming equal masses and springs).

System Equations for Two Spring-Coupled Masses

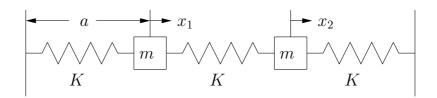


Figure 7: A short section of a string.

- The extensions of the left, middle and right springs are $x_1, x_2 x_1$, and $-x_2$, respectively.
- ullet When a spring is extended by x, the mass attached to the
 - **left** experiences a *positive* horizontal restoring force $F_r = Kx$;
 - **right** experiences an equal and opposite force $F_r = -Kx$,

where K is the spring constant.

• The equation of motion for the displacement of the first mass:

$$m\ddot{x}_1 = -Kx_1 + K(x_2 - x_1),$$

and the second mass,

$$m\ddot{x}_2 = -K(x_2 - x_1) + K(-x_2).$$

Additional Modes

- When modes are independent, the system can vibrate in one mode with minimal excitation of another.
- Unless constrained to one-dimension, the masses can also move *transversely* (at right-angles to the springs).
- An additional mass adds an additional mode of vibration.
- An N-mass system has N modes per degree of freedom.
- As N gets very large, it becomes convenient to view the system as a continuous string with a uniform mass density and tension.

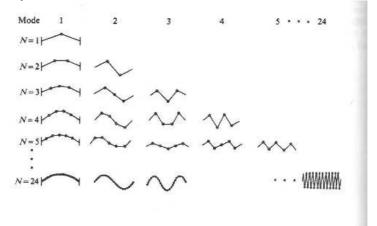


Figure 8: Increasing the number of masses (Science of Sound).

Forced (Driven) Vibration

- Getting they system to vibrate at any single mode of vibration requires exciting, or *driving* the system at the desired mode.
- See Dan Russell's site: The forced harmonic oscillator
- ullet When a simple harmonic oscillator is driven by an external force F(t), the equation of motion becomes

$$m\ddot{x} + R\dot{x} + Kx = F(t).$$

 The driving force may have harmonic time dependence, it may be impulsive, or it can be a random function of time (noise).

Phase of Driven Vibration

- The force driving an oscillation can be illustrated by holding a slinky in the vertical direction.
- Move the hand up and down slowly:
 - At low f_h , both the hand and the mass move in the same direction, and the spring hardly stretches at all.
- Increasing f_h makes it harder to move mass, and it lags behind the driving force.
- At resonance $f_h = f_0$:
 - the mass is 1/4 cycle behind the hand.
 - the amplitude is at its maximum.
- The higher the Q (quality factor), of the vibrating system, the more abrupt the transition in phase.

Resonance

- At *resonance*, there is maximum transfer of energy between the hand and the mass-spring system.
- Plotting amplitude A with respect to f_h , shows a curve that is almost symmetrical about its peak A_{max} , i.e., it has a bandwidth measured a distance down from A_{max} .

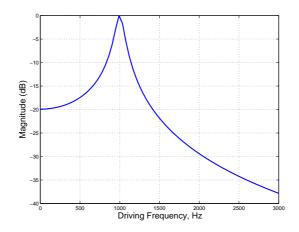


Figure 9: A Resonator shows peak amplitude when the driving force is equal to the system's natural frequency.

- Both the peak A_{max} the bandwidth Δf depend on the damping in the system:
 - 1. **heavily damped**: Δf is large and A_{max} is small.
 - 2. **little damping**: Δf is small and A_{max} is large, creating a *sharp* resonance.

Quality Factor and Bandwidth

- The bandwidth of the resonance is typically described using the quantity $Q=\frac{f_0}{\Delta f}$, for quality factor.
- A high-Q has a sharp resonance, and a low-Q has a broad resonance curve.
- For a vibrator set into motion and left to vibrate freely, its decay time is proportional to the Q of its resonance.
- In terms of our mechanical system, given the resistance $\alpha = \frac{R}{2m}$, the quality factor is:

$$Q = \frac{\omega_0}{2\alpha}.$$

How to Discretize?

ullet The one-sided Laplace transform of a signal x(t) is defined by

$$X(s) \triangleq \mathcal{L}_s\{x\} \triangleq \int_0^\infty x(t)e^{-st}dt$$

where t is real and $s=\sigma+j\omega$ is a complex variable.

 The differentiation theorem for Laplace transforms states that

$$\frac{d}{dt}x(t) \leftrightarrow sX(s)$$

where x(t) is any differentiable function that approaches zero as t goes to infinity.

- The transfer function of an ideal differentiator is H(s)=s, which can be viewed as the Laplace transform of the operator d/dt.
- Given the equation of motion

$$m\ddot{x} + R\dot{x} + Kx = F(t),$$

the Laplace Transform is

$$s^{2}X(s) + 2\alpha sX(s) + \omega_{0}^{2}X(s) = F(s).$$

Finite Difference

• The finite difference approximation (FDA) amounts to replacing derivatives by finite differences, or

$$\frac{d}{dt}x(t) \triangleq \lim_{\delta \to 0} \frac{x(t) - x(t - \delta)}{\delta} \approx \frac{x(nT) - x[(n - 1)T]}{T}.$$

ullet The z transform of the first-order difference operator is $(1-z^{-1})/T$. Thus, in the frequency domain, the finite-difference approximation may be performed by making the substitution

$$s \to \frac{1 - z^{-1}}{T}$$

ullet The first-order difference is first-order error accurate in T. Better performance can be obtained using the bilinear transform, defined by the substitution

$$s \longrightarrow c \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right)$$
 where $c = \frac{2}{T}$.

FDA of Equation of Motion

Pressure Controlled Valves

- Returning now to our model of wind instruments....
- Blowing into an instrument mouthpiece creates a pressure difference across the surface of the reed.
- When the reed oscillates, it creates and alternating opening and closure to the bore, allowing airflow entry during the open phase and cutting it off during the closed phase.
- The effect, is often seen as a periodic train of pressure pulses into the bore.
- Sound sources of this kind are referred to as pressure-controlled valves and they have been simulated in various ways to create musical synthesis models and vocal systems.

Classifying Pressure-Controlled Valves

- The method for simulating the reed typically depends on whether an additional upstream or downstream pressure causes the corresponding side of the valve to open or close further.
- As per Fletcher, the couplet (σ_1, σ_2) may be used describe the upstream and downstream valve behaviour, respectively.
- A σ_n value of
 - -+1 indicates an **opening** of the valve,
 - --1 indicates a **closing** of the value,

on side n in response to a pressure increase.

Three simple configurations of PC valves

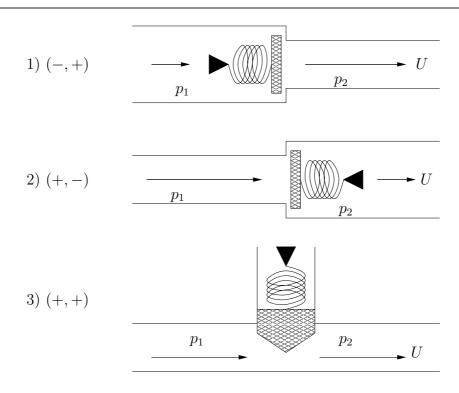


Figure 10: Simplified models of three common configurations of pressure-controlled valves.

- 1. (-,+): the valve is blown closed (as in woodwind instruments or reed-pipes of the pipe organ).
- 2. (+,-): the valve is blown open (as in the simple lip-reed models for brass instruments, the human larynx, harmonicas and harmoniums).
- 3. (+,+): the transverse (symmetric) model where the Bernoulli pressure causes the valve to close perpendicular to the direction of airflow.

Valve Displacement

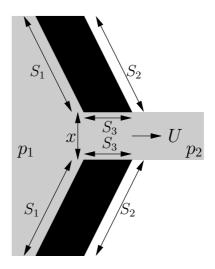


Figure 11: Geometry of a blown open pressure-controlled valve showing effective areas S_1, S_2, S_3 .

- Consider the double reed in a blown open configuration.
- Surface S_1 sees an upstream pressure p_1 , surface S_2 sees the downstream pressure p_2 (after flow separation), and surface S_3 sees the flow at the interior of the valve channel and the resulting Bernoulli pressure.

Valve Driving Force

ullet With these areas and the corresponding geometric couplet defined, the motion of the valve opening x(t) is governed by

$$m\frac{d^2x}{dt^2} + 2m\gamma\frac{dx}{dt} + k(x - x_0) = \sigma_1 p_1(S_1 + S_3) + \sigma_2 p_2 S_2,$$

where γ is the damping coefficient, x_0 the equilibrium position of the valve opening in the absence of flow, K the valve stiffness, and m the reed mass.

• The couplet therefore, is very useful when evaluating the force driving a mode of the vibrating valve.

Discretizing Valve Displacement

• The Laplace Transform of the valve displacement:

$$ms^{2}X(s) + mgsX(s) + KX(s) - Kx_{0} = F(s).$$

• The bilinear transform, defined by the substitution

$$s \longrightarrow c \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right)$$
 where $c = \frac{2}{T}$,

yields

$$\frac{X(z)}{F(z) + kx_0} = \frac{1 + 2z^{-1} + z^{-2}}{a_0 + a_1 z^{-1} + a_2 z^{-2}},$$

where

$$a_0 = mc^2 + mgc + k,$$

 $a_1 = -2(mc^2 - k),$
 $a_2 = mc^2 - mgc + k.$

The corresponding difference equation is

$$x(n) = \frac{1}{a_0} [F_k(n) + 2F_k(n-1) + F_k(n-2)) - a_1 x(n-1) - a_2 x(n-2)],$$

where $F_k(n) = F(n) + kx_0$.

Volume Flow

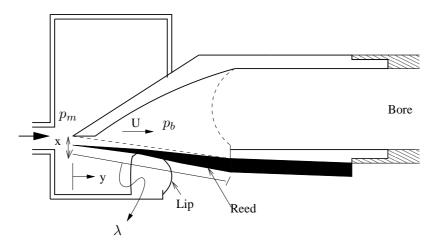


Figure 12: The clarinet Reed.

- The steady flow through a valve is determined based on input pressure p_1 and the resulting output pressure p_2 .
- \bullet The difference between these two pressure is denoted Δp and is related to volume flow via the stationary Bernoulli equation

$$U = A\sqrt{\frac{2\Delta p}{\rho}},$$

where A is the cross section area of the air column (and dependent on the opening x).

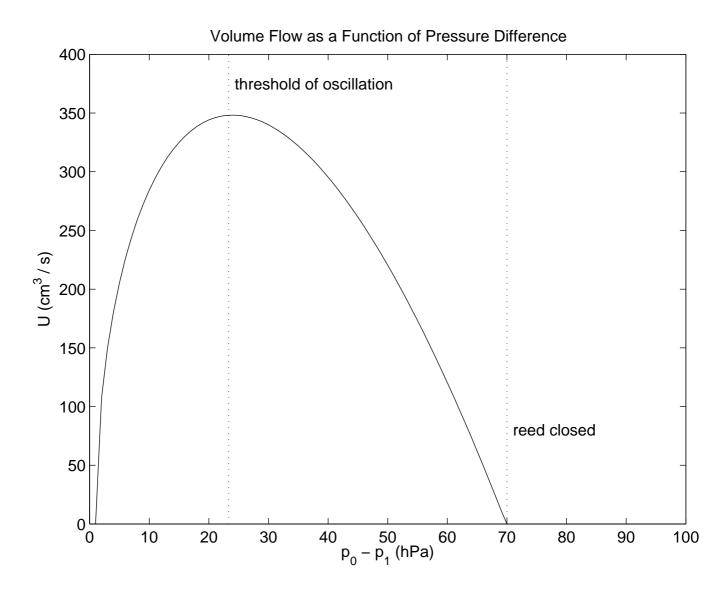


Figure 13: The reed table.