Music 270a: Waveshaping Synthesis

Tamara Smyth, trsmyth@ucsd.edu
Department of Music,
University of California, San Diego (UCSD)
February 25, 2019

Waveshaping Synthesis

- In waveshaping, it is possible to change the spectrum with the amplitude of the sound (i.e. changing the time-domain waveform by a controlled distortion of the amplitude).
- Since this is also a characteristic of acoustic instruments, waveshaping has been used effectively for synthesizing traditional musical instruments, and in particular, brass tones.
- Like FM, waveshaping synthesis enables us to vary the bandwidth and spectrum of a tone in a way that is more computationally efficient than additive synthesis.
- Also like FM, waveshaping provides a continuous control of the spectrum over time by means of an index.
- Unlike FM, waveshaping allows you to create a band-limited spectrum with a specified maximum harmonic number (i.e. making it easier to prevent aliasing!).

Waveshaper

- In a simple waveshaping instrument, an input signal $x(t)$ is passed through a box containing a waveshaping function or transfer function, also known as a waveshaper, $w(x)$.

Figure 1: A simple waveshaping instrument with a waveshaping transfer function $w(x)$.

- The transfer function $w(x)$ is typically nonlinear, and alters the shape of the input $x(t)$ to produce an output $y(t)$.
- The output, $y(t)$ will depend on:

1. the nature of the transfer function (the nature of the nonlinearity)
2. the amplitude of the input signal $x(t)$, e.g., increasing the amplitude of the input may cause the output waveform to change shape.

Indexing

- The transfer function may be an algebraic function of input signal $x(t)$.
- To reduce computation, or to use a waveshaping function that can't be expressed algebraically (e.g. hand-drawn, or data derived elsewhere), the transfer function $w(x)$ may be saved as a vector, or table.
- The waveshaping table $w(x)$ is indexed with the input samples given $x(t)$. This will require

1. scaling $x(t)$, typically between -1 and 1 , so that it's peak-to-peak amplitude equals the length of $w(x)$.
2. offsetting the values of $x(t)$ so they are positive and begin with one (1) (since we are using Matlab) so we have positive integers as indices to the table.
3. interpolating the values of $w(x)$ when the index given by $x(t)$ is not an integer.

Linear Interpolation

- Rather than rounding values of $x(t)$ to nearest integers, it is more accurate to interpolate between two neighboring values of the wavetable.
- If $x=6.5$, we could take values from table $w(x)$ at index 6 and 7, and "construct a line between them", i.e., take the value halfway between its neighbours.
- At $x=6.9749$, we would give greater weight to the $7^{\text {th }}$ element.

Figure 2: Linear interpolation.

Matlab Linear Interpolation

- More generally, linear interpolation is given by

$$
w(n+\eta)=(1-\eta) w(n)+(\eta) w(n+1)
$$

where n is the integer part of the original index value, and η is the fractional part, indicating how far from n we want to interpolate,

$$
\eta=x-n
$$

- Below is a Matlab function which implements linear interpolation.

```
function y = lininterp(w, x);
% LININTERP Linear interpolation.
% Y = LININTERP(W, X) where Y is the output,
% X is the input indeces, not necessarily
% integers, and W is the transfer function
% indexed by X.
n = floor(x);
eta = x-n;
W = [w 0] ;
y = (1-eta).*w(n) + eta.*W (n+1);
y = y(1:length(x));
```


Thru Box

- With a thru box, we define a waveshaping transfer function that will do nothing to the signal.
- What is the shape of such a transfer function?
- Though this may not seem very interesting, it's a good first step in understanding of how we use our waveshaping function and also to make sure we've properly implemented linear interpolation.

```
fs = 8;
dur = 1;
nT = [0:1/fs:dur-1/fs];
N = length(nT);
x = cos(2*pi*(1/dur)*nT); % input
xsc = (x + abs(min(x))); % offset x
xsc = xsc/max(xsc)*(N-1) + 1; % scale x
w = linspace(-1, 1, N); % waveshaper
y = lininterp(w, xsc);
```


Figure 3: Thru box.

Inverting Box

- Changing the direction of our linear function, we get a waveshaping function that inverts the signal.

```
w = linspace(1, -1, N); % waveshaper
y = lininterp(w, xsc);
```


Figure 4: Inverter.

Attenuator Box

- We can also make an attenuator by changing the slope of our linear function.
-•
$m=0.8 ;$
$\mathrm{w}=\mathrm{m} *$ linspace $(-1,11, \mathrm{~N}) ; \quad \%$ change slope.
$\mathrm{y}=\operatorname{lininterp}(\mathrm{w}, \mathrm{xsc})$;

Figure 5: Attenuator (slope of .08)

Transfer Function

- A waveshaper is characterized by its transfer function which relates the input signal to the output signal, that is, the output is a function of the input.
- It is represented graphically with the input on the x-axis and the output on the the y-axis.

Figure 6: An example waveshaper transfer function. The output is determined by the value of the transfer function with respect to the input.

Waveshaper Output

- Notice, in this case, that the shape of the output waveform, and thus the spectrum, changes with the amplitude of the input signal.
- The spectrum becomes richer as the input level is increased, a characteristic we already observed in sounds produced by musical instruments.

Figure 7: Using the waveshaper from Figure 6, the spectrum becomes richer as the input level is increased.

Even and Odd Transfer Function

- When the transfer function is an odd function 1 , the spectrum contains only odd-numbered harmonics.
- When the transfer function is even ${ }^{2}$, the spectrum contains only even-numbered harmonics, thereby doubling the fundamental frequency and raising the pitch of the sound by an octave.

Figure 8: Output Spectrum of even and odd Transfer Functions.

[^0]
Controlling the spectrum

- A waveshaper with a linear transfer function will not produce distortion, but any deviation from a line will introduce some sort of distortion and change the spectrum of the input.
- To control the maximum harmonic in the spectrum (say, for the purpose of avoiding aliasing), a transfer function is expressed as a polynomial:

$$
F(x)=d_{0}+d_{1} x+d_{2} x^{2}+\ldots+d_{N} x^{N}
$$

where the order of the polynomial is N, and d_{i} are the polynomial coefficients.

- When driven with a sinusoid, a waveshaper with a transfer function of order N produces no harmonics above the $N^{t h}$ harmonic.
- When the driving sinusoid is of unit amplitude, the amplitudes of the various harmonics can be calculated using the right side of Pascal's triangle.

Constructing Pascal's Triangle

- In order to see the amplitudes of the harmonics produced by a term in the polynomial, we can look at Pascal's triangle.
- To construct Pascal's triangle, first create a $N \times N$ table, and input ones along the diagonal, starting from the top left-hand corner (i.e., create an N by N identity matrix).

DIV		h_{0}	h_{1}	h_{2}	h_{3}	h_{4}	h_{5}	h_{6}	h_{7}	h_{8}	h_{9}	h_{10}	h_{11}
	x^{0}	1											
	x^{1}		1										
	x^{2}			1									
	x^{3}				1								
x^{4}					1								
x^{5}						1							
	x^{6}							1					
x^{7}								1					
	x^{8}									1			
	x^{9}										1		
x^{10}											1		
x^{11}												1	

- The symbols along the side, x^{j}, represent the term in the polynomial.
- The symbols along the top, h_{j}, represent amplitude of the $j^{\text {th }}$ harmonic.

Filling in Pascal's Triangle

- To fill in the values follow the following two steps:

1. Set a value in column h_{0} to twice the value of h_{1} from the previous row.
2. Add two adjacent numbers in the same row and place the sum below the space between them, on the next row.

DIV		h_{0}		h_{1}	h_{2}	h_{3}	h_{4}	h_{5}	h_{6}	h_{7}	h_{8}	h_{9}	h_{10}	h_{11}
	x^{0}	1												
	x^{1}			1										
	x^{2}	2			1									
	x^{3}			3		1								
	x^{4}				4		1							
	x^{5}					5		1						
	x^{6}						6		1					
	x^{7}							7		1				
	x^{8}								8		1			
	x^{9}									9		1		
	x^{10}										10		1	
	x^{11}											11		1

- Continue these two steps, first by filling in the next value for h_{0}, and then taking the adjacent sum.
- Finally, to obtain the divider DIV, multiply the value of DIV from the previous row by 2 , starting in row x^{0} with 0.5 .

DIV		h_{0}	h_{1}	h_{2}	h_{3}	h_{4}	h_{5}	h_{6}	h_{7}	h_{8}	h_{9}	h_{10}	h_{11}
0.5	x^{0}	1											
1	x^{1}	0	1										
2	x^{2}	2	0	1									
4	x^{3}	0	3	0	1								
8	x^{4}	6	0	4	0	1							
16	x^{5}	0	10	0	5	0	1						
32	x^{6}	20	0	15	0	6	0	1					
64	x^{7}	0	35	0	21	0	7	0	1				
128	x^{8}	70	0	56	0	28	0	8	0	1			
256	x^{9}	0	126	0	84	0	36	0	9	0	1		
512	x^{10}	252	0	210	0	120	0	45	0	10	0	1	
1024	x^{11}	0	462	0	330	0	165	0	55	0	11	0	1

Calculating Spectral Output

- Notice from Pascal's triangle that if the order of the polynomial is even, only even harmonics will be present.
- If the order is odd, only odd harmonics will be present.
- If the transfer function $F(x)=x^{5}$ is driven by an oscillator of amplitude 1 , the output will contain the first, third and fifth harmonics with the following amplitudes:

$$
\begin{aligned}
h_{1} & =\frac{1}{16}(10)=0.625 \\
h_{3} & =\frac{1}{16}(5)=0.3125 \\
h_{5} & =\frac{1}{16}(1)=0.0625
\end{aligned}
$$

Transfer function $F(x)=x^{5}$

- Create a 1 second long 220 Hz sinusoid input x and plot the output $y=x^{5}$ in Matlab:

```
fs = 44100;
nT = 0:1/fs:1;
x = sin(2*pi*220*nT);
y = x. ^5;
```


Figure 9: Output spectrum of the transfer function $y=x^{5}$, where x is a unit amplitude sinusoid at a frequency of 220 Hz .

Transfer Functions with Multiple Terms

- If the transfer function has multiple terms, then the output will be the sum of the contributions of each term.
- For example, the transfer function

$$
F(x)=x+x^{2}+x^{3}+x^{4}+x^{5}
$$

produces an output spectrum with the following harmonic amplitudes:

$$
\begin{aligned}
h_{0} & =\frac{1}{2}(2)+\frac{1}{8}(6)=1.75 \\
h_{1} & =1+\frac{1}{4}(3)+\frac{1}{16}(10)=2.375 \\
h_{2} & =\frac{1}{2}(1)+\frac{1}{8}(4)=1.0 \\
h_{3} & =\frac{1}{4}(1)+\frac{1}{16}(5)=0.5625 \\
h_{4} & =\frac{1}{8}(1)=0.125 \\
h_{5} & =\frac{1}{16}(1)=0.0625
\end{aligned}
$$

Figure 10: Output spectrum of the transfer function $y=x+x^{2}+x^{3}+x^{4}+x^{5}$, where x is a unit amplitude sinusoid at a frequency of 220 Hz .

Non-sinusoidal input

- The previous calculations are based on a unit-amplitude sinusoidal input.
- Non sinusoidal input to the waveshapping function produces less predictable output, and therefore is more difficult to keep alias free.
- It is, however, possible to change the amplitude of the sinusoidal input so that it is less than-or greater than-1.
- This creates a distortion index similar to the modulation index seen in FM synthesis.

Distortion Index

- If the input cosine has an amplitude of a, then the output in polynomial form becomes

$$
F(a x)=d_{0}+d_{1} a x+d_{2} a^{2} x^{2}+\ldots+d_{N} a^{N} x^{N}
$$

- Example: Given the waveshapping transfer function

$$
F(x)=x+x^{3}+x^{5}
$$

an input sinusoid with amplitude a yields the output

$$
F(a x)=a x+(a x)^{2}+(a x)^{5},
$$

with the amplitude of each harmonic calculated using Pascal's triangle to obtain

$$
\begin{aligned}
& h_{1}(a)=a+\frac{1}{4} 3 a^{3}+\frac{1}{16} 10 a^{5} \\
& h_{3}(a)=\frac{1}{4} a^{3}+\frac{1}{16} 5 a^{5} \\
& h_{5}(a)=\frac{1}{16} a^{5}
\end{aligned}
$$

- Because an increase in a (typically between 0 and 1) produces a richer output spectrum, it is often referred to as a distortion index (analogous to the index of modulation in FM synthsis).

Selecting a Tranfer Function

- Spectral Matching: Select a transfer function that matches a desired steady-state spectrum for a particular distortion index a.
- This may be done using Chebyshev polynomials of the first kind, denoted $T_{k}(x)$, where k is the order of the polynomial.
- The zeroth- and first-order Chebyshev polynomials are given by

$$
\begin{aligned}
& T_{0}(x)=1 \\
& T_{1}(x)=x
\end{aligned}
$$

and higher-order polynomials are given by

$$
T_{k+1}(x)=2 x T_{k}(x)-T_{k-1}(x)
$$

- These polynomials have the property that when a sinusoid of unit amplitude is applied to the input, the output signal contains only the $k^{\text {th }}$ harmonic.

The first few Chebyshev Polynomials of the first kind

- For your convenience, here are some of the first few:

$$
\begin{aligned}
& T_{0}(k)=1 \\
& T_{1}(k)=x \\
& T_{2}(k)=2 x^{2}-1 \\
& T_{3}(k)=4 x^{3}-3 x \\
& T_{4}(k)=8 x^{4}-8 x^{2}+1 \\
& T_{5}(k)=16 x^{5}-20 x^{3}+5 x
\end{aligned}
$$

- The rest may be generated in Matlab using the following:

$$
\begin{aligned}
& \mathrm{T}(:, 1)=\text { ones }(\operatorname{length}(\mathrm{x}), 1) ; \\
& \mathrm{T}(:, 2)=\mathrm{x} \\
& \text { for } \mathrm{n}=3: \operatorname{Hmax}+1 \\
& \mathrm{~T}(:, \mathrm{n})=2 * \mathrm{x} . * \mathrm{~T}(:, \mathrm{n}-1)-\mathrm{T}(:, \mathrm{n}-2) \text {; } \\
& \text { end }
\end{aligned}
$$

Matching a Spectrum Using Chebyshev Polynomials

- A spectrum containing several harmonics can be matched by combining the appropriate Chebyshev polynomial for each harmonic into a single transfer function.
- Let h_{j} be the amplitude of the $j^{\text {th }}$ harmonic, and N be the highest harmonic in the spectrum. The transfer function is then given by:

$$
F(x)=h_{0} T_{0}(x)+h_{1} T_{1}(x)+h_{2} T_{2}(x)+\cdots+h_{N} T_{N}(x)
$$

Example of Spectral Matching

- Given the following spectrum, what would be the transfer function?

Figure 11: A steady state spectrum.

- The spectrum contains the first, second, fourth, and fifth harmonics, with amplitudes 5, 1, 4, 3, respectively.
- The transfer function is given by

$$
\begin{aligned}
F(x)= & 5 T_{1}(x)+T_{2}(x)+4 T_{4}(x)+3 T_{5}(x) \\
= & 5 x+\left(2 x^{2}-1\right)+4\left(8 x^{4}-8 x^{2}+1\right) \\
& +3\left(16 x^{5}-20 x^{3}+5 x\right) \\
= & 48 x^{5}+32 x^{4}-60 x^{3}-30 x^{2}+20 x+3 .
\end{aligned}
$$

Figure 12: The steady state plotted in Matlab.

Selecting a Polynomial to Fit Data

- If you wish to construct a waveshaper based on incoming data, then you will create a table, and proceed using linear interpolation (as shown in previous slides).
- The problem with this approach is that you can't ensure a bandlimited spectrum withouth aliasing.
- It is also possible to fit a polynomial to the data (there are many ways of doing this, the details go beyond the scope of this class).
- You may like to take advantable of Matlab's polyfit to accomplish this task.

[^0]: ${ }^{1}$ A function $f(n)$ is said to be odd if $f(-n)=-f(n)$.
 ${ }^{2}$ A function $f(n)$ is said to be even if $f(-n)=f(n)$

