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Waveshaping Synthesis

• In waveshaping, it is possible to change the spectrum
with the amplitude of the sound (i.e. changing the
time-domain waveform by a controlled distortion of
the amplitude).

• Since this is also a characteristic of acoustic
instruments, waveshaping has been used effectively
for synthesizing traditional musical instruments, and
in particular, brass tones.

• Like FM, waveshaping synthesis enables us to vary the
bandwidth and spectrum of a tone in a way that is
more computationally efficient than additive synthesis.

• Also like FM, waveshaping provides a continuous
control of the spectrum over time by means of an
index.

• Unlike FM, waveshaping allows you to create a
band-limited spectrum with a specified maximum
harmonic number (i.e. making it easier to prevent
aliasing!).
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Waveshaper

• In a simple waveshaping instrument, an input signal
x(t) is passed through a box containing a
waveshaping function or transfer function, also known
as a waveshaper, w(x).

w(x) y(t)x(t)

Figure 1: A simple waveshaping instrument with a waveshaping transfer function w(x).

• The transfer function w(x) is typically nonlinear, and
alters the shape of the input x(t) to produce an
output y(t).

• The output, y(t) will depend on:

1. the nature of the transfer function (the nature of
the nonlinearity)

2. the amplitude of the input signal x(t), e.g.,
increasing the amplitude of the input may cause
the output waveform to change shape.
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Indexing

• The transfer function may be an algebraic function of
input signal x(t).

• To reduce computation, or to use a waveshaping
function that can’t be expressed algebraically (e.g.
hand-drawn, or data derived elsewhere), the transfer
function w(x) may be saved as a vector, or table.

• The waveshaping table w(x) is indexed with the input
samples given x(t). This will require

1. scaling x(t), typically between -1 and 1, so that
it’s peak-to-peak amplitude equals the length of
w(x).

2. offsetting the values of x(t) so they are positive
and begin with one (1) (since we are using Matlab)
so we have positive integers as indices to the table.

3. interpolating the values of w(x) when the index
given by x(t) is not an integer.
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Linear Interpolation

• Rather than rounding values of x(t) to nearest
integers, it is more accurate to interpolate between
two neighboring values of the wavetable.

• If x = 6.5, we could take values from table w(x) at
index 6 and 7, and “construct a line between them”,
i.e., take the value halfway between its neighbours.

• At x = 6.9749, we would give greater weight to the

7th element.
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Figure 2: Linear interpolation.
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Matlab Linear Interpolation

• More generally, linear interpolation is given by

w(n + η) = (1− η)w(n) + (η)w(n + 1)

where n is the integer part of the original index value,
and η is the fractional part, indicating how far from n

we want to interpolate,

η = x− n.

• Below is a Matlab function which implements linear
interpolation.

function y = lininterp(w, x);

% LININTERP Linear interpolation.

% Y = LININTERP(W, X) where Y is the output,

% X is the input indeces, not necessarily

% integers, and W is the transfer function

% indexed by X.

n = floor(x);

eta = x-n;

w = [w 0];

y = (1-eta).*w(n) + eta.*w(n+1);

y = y(1:length(x));
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Thru Box

• With a thru box, we define a waveshaping transfer
function that will do nothing to the signal.

• What is the shape of such a transfer function?

• Though this may not seem very interesting, it’s a
good first step in understanding of how we use our
waveshaping function and also to make sure we’ve
properly implemented linear interpolation.

fs = 8;

dur = 1;

nT = [0:1/fs:dur-1/fs];

N = length(nT);

x = cos(2*pi*(1/dur)*nT); % input

xsc = (x + abs(min(x))); % offset x

xsc = xsc/max(xsc)*(N-1) + 1; % scale x

w = linspace(-1, 1, N); % waveshaper

y = lininterp(w, xsc);
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Figure 3: Thru box.
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Inverting Box

• Changing the direction of our linear function, we get
a waveshaping function that inverts the signal.

...

w = linspace(1, -1, N); % waveshaper

y = lininterp(w, xsc);
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Figure 4: Inverter.
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Attenuator Box

• We can also make an attenuator by changing the
slope of our linear function.

...

m = 0.8;

w = m*linspace(-1, 11, N); % change slope.

y = lininterp(w, xsc);
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Transfer Function

• A waveshaper is characterized by its transfer function
which relates the input signal to the output signal,
that is, the output is a function of the input.

• It is represented graphically with the input on the
x-axis and the output on the the y-axis.
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Figure 6: An example waveshaper transfer function. The output is determined by the value
of the transfer function with respect to the input.
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Waveshaper Output

• Notice, in this case, that the shape of the output
waveform, and thus the spectrum, changes with the
amplitude of the input signal.

• The spectrum becomes richer as the input level is
increased, a characteristic we already observed in
sounds produced by musical instruments.
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Figure 7: Using the waveshaper from Figure 6, the spectrum becomes richer as the input
level is increased.
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Even and Odd Transfer Function

• When the transfer function is an odd function1, the
spectrum contains only odd-numbered harmonics.

• When the transfer function is even2, the spectrum
contains only even-numbered harmonics, thereby
doubling the fundamental frequency and raising the
pitch of the sound by an octave.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Odd Transfer Function (x7)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
Even Transfer Function (x8)

0 1 2 3 4 5

x 10
4

0

1000

2000

3000

4000

5000

6000
Output Spectrum

Frequency (Hz)

M
ag

ni
tu

de
 (

lin
ea

r)

0 1 2 3 4 5

x 10
4

0

1000

2000

3000

4000

5000

6000
Output Spectrum

Frequency (Hz)

M
ag

ni
tu

de
 (

lin
ea

r)

Figure 8: Output Spectrum of even and odd Transfer Functions.

1A function f(n) is said to be odd if f(−n) = −f(n).
2A function f(n) is said to be even if f(−n) = f(n)
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Controlling the spectrum

• A waveshaper with a linear transfer function will not
produce distortion, but any deviation from a line will
introduce some sort of distortion and change the
spectrum of the input.

• To control the maximum harmonic in the spectrum
(say, for the purpose of avoiding aliasing), a transfer
function is expressed as a polynomial:

F (x) = d0 + d1x + d2x
2 + ... + dNx

N

where the order of the polynomial is N , and di are
the polynomial coefficients.

• When driven with a sinusoid, a waveshaper with a
transfer function of order N produces no harmonics
above the N th harmonic.

• When the driving sinusoid is of unit amplitude, the
amplitudes of the various harmonics can be calculated
using the right side of Pascal’s triangle.
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Constructing Pascal’s Triangle

• In order to see the amplitudes of the harmonics
produced by a term in the polynomial, we can look at
Pascal’s triangle.

• To construct Pascal’s triangle, first create a N ×N

table, and input ones along the diagonal, starting
from the top left-hand corner (i.e., create an N by N
identity matrix).

DIV h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11

x0 1
x1 1
x2 1
x3 1
x4 1
x5 1
x6 1
x7 1
x8 1
x9 1
x10 1
x11 1

• The symbols along the side, xj, represent the term in
the polynomial.

• The symbols along the top, hj, represent amplitude of

the jth harmonic.

Music 270a: Waveshaping Synthesis 15



Filling in Pascal’s Triangle

• To fill in the values follow the following two steps:

1. Set a value in column h0 to twice the value of h1

from the previous row.

2. Add two adjacent numbers in the same row and
place the sum below the space between them, on
the next row.

DIV h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11

x0 1
x1 1
x2 2 1
x3 3 1
x4 4 1
x5 5 1
x6 6 1
x7 7 1
x8 8 1
x9 9 1
x10 10 1
x11 11 1

• Continue these two steps, first by filling in the next
value for h0, and then taking the adjacent sum.
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• Finally, to obtain the divider DIV, multiply the value
of DIV from the previous row by 2, starting in row x0

with 0.5.

DIV h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11

0.5 x0 1
1 x1 0 1
2 x2 2 0 1
4 x3 0 3 0 1
8 x4 6 0 4 0 1
16 x5 0 10 0 5 0 1
32 x6 20 0 15 0 6 0 1
64 x7 0 35 0 21 0 7 0 1
128 x8 70 0 56 0 28 0 8 0 1
256 x9 0 126 0 84 0 36 0 9 0 1
512 x10 252 0 210 0 120 0 45 0 10 0 1
1024 x11 0 462 0 330 0 165 0 55 0 11 0 1
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Calculating Spectral Output

• Notice from Pascal’s triangle that if the order of the
polynomial is even, only even harmonics will be
present.

• If the order is odd, only odd harmonics will be present.

• If the transfer function F (x) = x5 is driven by an
oscillator of amplitude 1, the output will contain the
first, third and fifth harmonics with the following
amplitudes:

h1 =
1

16
(10) = 0.625

h3 =
1

16
(5) = 0.3125

h5 =
1

16
(1) = 0.0625
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Transfer function F (x) = x5

• Create a 1 second long 220 Hz sinusoid input x and
plot the output y = x5 in Matlab:

fs = 44100;

nT = 0:1/fs:1;

x = sin(2*pi*220*nT);

y = x.^5;

Figure 9: Output spectrum of the transfer function y = x5, where x is a unit amplitude
sinusoid at a frequency of 220 Hz.

Music 270a: Waveshaping Synthesis 19



Transfer Functions with Multiple
Terms

• If the transfer function has multiple terms, then the
output will be the sum of the contributions of each
term.

• For example, the transfer function

F (x) = x + x2 + x3 + x4 + x5

produces an output spectrum with the following
harmonic amplitudes:
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Figure 10: Output spectrum of the transfer function y = x+ x2 + x3 + x4 + x5, where x is a
unit amplitude sinusoid at a frequency of 220 Hz.
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Non-sinusoidal input

• The previous calculations are based on a
unit-amplitude sinusoidal input.

• Non sinusoidal input to the waveshapping function
produces less predictable output, and therefore is
more difficult to keep alias free.

• It is, however, possible to change the amplitude of the
sinusoidal input so that it is less than—or greater
than—1.

• This creates a distortion index similar to the
modulation index seen in FM synthesis.
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Distortion Index

• If the input cosine has an amplitude of a, then the
output in polynomial form becomes

F (ax) = d0 + d1ax + d2a
2x2 + ... + dNa

NxN

• Example: Given the waveshapping transfer function

F (x) = x + x3 + x5,

an input sinusoid with amplitude a yields the output

F (ax) = ax + (ax)2 + (ax)5,

with the amplitude of each harmonic calculated using
Pascal’s triangle to obtain

h1(a) = a +
1

4
3a3 +

1

16
10a5

h3(a) =
1

4
a3 +

1

16
5a5

h5(a) =
1

16
a5

• Because an increase in a (typically between 0 and 1)
produces a richer output spectrum, it is often referred
to as a distortion index (analogous to the index of
modulation in FM synthsis).
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Selecting a Tranfer Function

• Spectral Matching: Select a transfer function that
matches a desired steady-state spectrum for a
particular distortion index a.

• This may be done using Chebyshev polynomials of the
first kind, denoted Tk(x), where k is the order of the
polynomial.

• The zeroth- and first-order Chebyshev polynomials are
given by

T0(x) = 1

T1(x) = x

and higher-order polynomials are given by

Tk+1(x) = 2xTk(x)− Tk−1(x).

• These polynomials have the property that when a
sinusoid of unit amplitude is applied to the input,

the output signal contains only the kth harmonic.
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The first few Chebyshev Polynomials
of the first kind

• For your convenience, here are some of the first few:

T0(k) = 1

T1(k) = x

T2(k) = 2x2 − 1

T3(k) = 4x3 − 3x

T4(k) = 8x4 − 8x2 + 1

T5(k) = 16x5 − 20x3 + 5x

• The rest may be generated in Matlab using the
following:

T(:, 1) = ones(length(x), 1);

T(:, 2) = x;

for n = 3:Hmax+1

T(:, n) = 2*x.*T(:,n-1) - T(:,n-2);

end
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Matching a Spectrum Using
Chebyshev Polynomials

• A spectrum containing several harmonics can be
matched by combining the appropriate Chebyshev
polynomial for each harmonic into a single transfer
function.

• Let hj be the amplitude of the j
th harmonic, and N

be the highest harmonic in the spectrum. The
transfer function is then given by:

F (x) = h0T0(x)+h1T1(x)+h2T2(x)+· · ·+hNTN(x).
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Example of Spectral Matching

• Given the following spectrum, what would be the
transfer function?
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Figure 11: A steady state spectrum.

• The spectrum contains the first, second, fourth, and
fifth harmonics, with amplitudes 5, 1, 4, 3,
respectively.
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• The transfer function is given by

F (x) = 5T1(x) + T2(x) + 4T4(x) + 3T5(x)

= 5x + (2x2 − 1) + 4(8x4 − 8x2 + 1)

+3(16x5 − 20x3 + 5x)

= 48x5 + 32x4 − 60x3 − 30x2 + 20x + 3.
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Figure 12: The steady state plotted in Matlab.

Music 270a: Waveshaping Synthesis 28



Selecting a Polynomial to Fit Data

• If you wish to construct a waveshaper based on
incoming data, then you will create a table, and
proceed using linear interpolation (as shown in
previous slides).

• The problem with this approach is that you can’t
ensure a bandlimited spectrum withouth aliasing.

• It is also possible to fit a polynomial to the data
(there are many ways of doing this, the details go
beyond the scope of this class).

• You may like to take advantable of Matlab’s polyfit
to accomplish this task.
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