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A Digital Waveguide Section

• Both plane waves of a cylinder and spherical

waves of a cone can be modeled using a digital
waveguide.

• For an infinitely long tube, filter λ(ω) accounts for
the one-way propagation loss.
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Figure 1: A waveguide section for an acoustic tube showing delay and wall loss λ(ω).

• For a cone, an addtional filter is required to account
for spherical spreading at a distance ρ from the cone
apex:
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Figure 2: A waveguide section for a cone showing the additional spherical spreading ρ.
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Simple Wall Loss

• The effects of viscous drag and thermal conduction
along the bore walls lead to an attenuation in the
propagating waves given by

α(ω) = 2× 10−5

√
ω

a

where a is the bore radius, valid for tube sizes seen in
most musical instruments.

• The round-trip attenuation for a tube of length L is
given by

λ2(ω) = e−2αL
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Termination and Scattering

• A change of impedance, such as a termination or
connection to another waveguide section, will require
additional filters to model any reflection and
transmission.
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Figure 3: Termination: closed and open ends.

�
�
�
�

�
�
�
�

T2(ω)

R1(ω) R2(ω)

T1(ω)

Figure 4: Scattering: a junction with another section.
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Change in Tube Area

• A change in tube cross-sectional area creates a
junction between two impedances Z1 and Z2.
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p−1
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Figure 5: Tube with a change in cross-sectional area.

• The pressure and velocity at the junction is given by

p(J) = p+1 (J) + p−1 (J)

U (J) = U+
1 (J) + U−

1 (J)

=
1

Z1
(p+1 (J)− p−1 (J))

where

p+1 (J) = Z1U
+
1 , p−1 (J) = −Z1U

−
1 .

• The new impedance at the junction Z2, is given by

Z2 =
p(J)

U (J)
= Z1

p+1 (J) + p−1 (J)

p+1 (J)− p−1 (J)
.
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Deriving the Reflection Coefficient
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Figure 6: Scattering: a junction with another section.

• The relationship between the adjacent impedances
causes a reflection in the first section that can be
expressed in terms of tube area cross-sectional S,

R1 =
p−1 (J)

p+1 (J)

=
Z2 − Z1

Z2 + Z1

=
S1 − S2

S1 + S2
= k.

• It follows that the reflection in the second section is

R2 =
S2 − S1

S2 + S1
− = −k.
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Two-port Scattering Junction

• The junction reflection filters are given by

R1 = k and R2 = −k.

• For cylinders, what is not reflected is transmitted:

– the transmission filters are amplitude

complementary,

– for pressure waves yields:

T1 = 1 +R1 = 1 + k,

and
T2 = 1 +R2 = 1− k.

z−M

z−Mz−M

z−M

1 + k

k

1− k

−k

Figure 7: A two port junction between two cylinders.
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Impedance of Conical Sections

• If one of the waveguide sections is a cone, then
impedance is actually frequency dependent.

• For spherical pressure waves in conical tubes, waves
popagating away from the cone apex

(denoted by the + superscript), the impedance is
given by

Z+
n (r;ω) =

ρc

S

jω

jω + c/r
, (1)

where r is the distance from the observation point to
the cone apex.

• For spherical waves propagating toward the

cone apex, the impedance is given by

Z−
n (r;ω) =

ρc

S

jω

jω − c/r
= Z+∗

n (r;ω). (2)
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Open-End Reflection

• A special condition in a change of impedance occurs
at the open end of an acoustic tube.
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Figure 8: Termination: closed and open ends.

• The reflection filter for an open end is given by

Rop(ω) =
ZL(ω)/Z0 − 1

ZL(ω)/Z0 + 1
,

where Z0 =
ρc
S is the wave impedance, and ZL(ω) is

the complex terminating impedance at the open end.

• The open-end impedance ZL(ω) is rather
complicated, but an expression is given for cylindrical
tubes by Levine and Schwinger in terms of Bessel and
Struve functions 1.

1see “On the Radiation of Sound from an Unflanged Circular Pipe”, Physical Review, vol. 73, no.4,

February 15 1948
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Open-End Reflection Function

• From the data plots given by Levine and Schwinger, it
turns out the ratio ZL/Z0 may be approximated by

ZL/Z0 ≈
jka

ζ + jka

where k = ω/c is the wavenumber, and a is the
radius of the cylinder, and ζ is a scalar near one2.

• Substituting this expression for ZL/Z1 into

Rop(ω) =
ZL(ω)/Z0 − 1

ZL(ω)/Z0 + 1
,

yields a reflection filter approximated by

Rop =
−1

1 + 2jka/ζ
.

• The open-end reflection filter Rop is a one-pole filter
with a cut-off frequency of ω = ζc/(2a).

2The scalar determines the transition between the low-frequency and high-frequency behaviour.
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Open-End Reflection Filter Design

N = 1024;

fs = 44100;

c = 340; % sound speed

a = 0.01; % bore radius

omega = 2*pi*[0:N-1]’*fs/2/N;

k = omega/c; zeta = .9;

jka = j.*k.*a;

ZLoZ1 = jka./(zeta + jka);

R = (ZLoZ1 - 1)./(ZLoZ1 + 1);

[Bi,Ai] = invfreqz(R, linspace(0,pi,N), 1,1);

[Bs,As] = stmcb(real(ifft(R)), 1,1);

[Bp,Ap] = prony(real(ifft(R)), 1,1);
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0
Reflection Filter fit using Least−Squares (invfreqz)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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−40
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0
Reflection Filter fit using Steiglitz−McBride iteration (stmcb)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−60

−40

−20

0
Reflection Filter fit using Prony method (prony)

Figure 9: Several filter design methods to fit a filter.
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Scattering

• Scattering is a phenomenon in which the wave is
scattered into an infinity of waves propagating in
different directions.

• As we have seen, a discontinuity in the diameter of an
acoustic tube will cause traveling waves to be partially
reflected and partially transmitted—a scattering in
two (2) directions.

• Examples of discontinuities causing scattering:

– A change of tube diameter

– A junction with other acoustic elements (tubes,
cavities),

– Tone holes.
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N-port Parallel Scattering Junctions

• All scattering junctions arise from the parallel
connection of N physical waveguides.

• Consider the junction of N lossless acoustic tubes,
each with real, positive, scalar wave admittance

Γn =
1

Zn
.

where Zn is the wave impedance of the nth

waveguide.

• Each port on the junction has both an input and
output terminal.

• The physical pressure and velocity at a port n is equal
to the sum of the corresponding incoming and
outgoing variables, that is,

pn = p+n + p−n
Un = U+

n + U−
n .
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Physical Variables at the Junction

• The law for conservation of mass and

momentum dictate that the pressure at the junction
must be continuous.

• Therefore, for a junction with N ports, the junction
pressure pJ is given by

pJ = pn, n = 1 . . . N.

• By the same law, the volume flow at the N-port

junction sums to zero,

N
∑

n=1

Un = 0.

The pressure at the junction is the same for
all N waveguides at the junction point, and
the velocities from each branch sum to zero.
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Junction Pressure

• Because of pressure continuity at the junction, the
outgoing pressure on any port n is given by

pJ = pn
= p+n + p−n

p−n = pJ − p+n .

• Using the fact that velocities from each port sum to
zero,

N
∑

n=1

(

U+
n + U−

n

)

= 0,

substituting the relationship to pressure traveling
wave components,

N
∑

n=1

(

p+n
Zn

− p−n
Zn

)

= 0,

as well as the outgoing pressure on any port n,

N
∑

n=1

(

p+n
Zn

− pJ − p+n
Zn

)

= 0,
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we may solve for the pressure at the junction

N
∑

n=1

2p+n
Zn

=
N
∑

n=1

pJ
Zn

2
N
∑

n=1

p+n
Zn

= pJ

N
∑

n=1

1

Zn

pJ =
2
∑

Γnp
+
n

∑

Γn

where Γn = 1/Zn is the characteristic admittance of

the nth port.
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Matrix Formulation of the N-port

• If

p+ =













p+1
p+2
·
·
p+N













, p− =













p−1
p−2
·
·
p−N













,

A =











1 −1 0 0 ... 0 0
0 1 −1 0 ... 0 0
· · · · ... · ·
1
Z+
1

1
Z+
2

1
Z+
3

1
Z+
4

... 1
Z+
N−1

1
Z+
N











,

B = −











1 −1 0 0 ... 0 0
0 1 −1 0 ... 0 0
· · · · ... · ·
1
Z−
1

1
Z−
2

1
Z−
3

1
Z−
4

... 1
Z−
N−1

1
Z−
N











,

then we can write

Ap+ = Bp−,

and
p− = B−1Ap+.
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Three-Port Parallel Junction

• In an example of three connecting tubes, the model
would require three digital waveguides and a 3-port
parallel junction to simulate the point at which they
connect.

z−Nz−N

z−N z−N

3-port

junction
parallel

z−N

z−N

Figure 10: Three digital waveguides meeting at a three-port parallel junction.
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-
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p3

+

p2

Figure 11: Three-Port Parallel Junction.

• The model of the three-port parallel junction will
receive an incoming pressure wave, p+n , on each of the
three ports, and will return the corresponding
outgoing pressure value,

p−n = pJ − p+n .
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Example uses of the 3-port junction

• Tone holes in acoustic wind instruments: three
connected tubes, with the finger hole being a very
short branch off the main bore (Douglas Keefe).

• The bifurcation at the velum in the human vocal
tract: simulating the oral and nasal airways (P. Cook).

• The bifurcations of the trachea to the left and right
bronchi: simulating the avian syrinx (Tamara Smyth).

Syringeal Membranes

Pressure from lungs

Bronchi

Interclavicular Air Sac

Trachea

Figure 12: Syrinx
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Modeling Change in Cross-Section

• The human vocal tract has different profiles when
producing different vowel sounds.

Figure 13: ’ae’ as in “bat”.
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Figure 14: Modeling a change in cross section using a sequence of 2-port scattering junctions.

• A sequence of two-port scattering junctions can
model a piecewise approximation of a tube changing
in cross section.
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Modeling the Instrument Bell

• Another example, is the continually changing
cross-section of an instrument bell.

Figure 15: The profile of a trombone bell.

• The tombone bell is well described by the so-called
Bessel horn,

a(x) = b(x + x0)
−γ, (3)

where x0 is the position of the mouth of the horn, x
is the distance from the horn mouth, and a(x) is the
radius over the length of the bell.

• For more efficient computation, the effects of the bell
may be lumped to a single reflection and transmission
function.

Music 206: Modeling Tubes and Wind Instruments 21



Obtaining Bell Reflection Function

• The relationship between traveling waves in adjacent
sections may be written in matrix form as

[

p+n
p−n

]

= An

[

p+n+1

p−n+1

]

,

where the scattering matrix is given by

An =





Zn
Zn+1

Zn+1+Z∗
n

Zn+Z∗
n
ejkLn+1 Zn

Z∗
n+1

Z∗
n+1−Z∗

n

Zn+Z∗
n
e−jkLn+1

Z∗
n

Zn+1

Zn+1−Zn

Zn+Z∗
n
ejkLn+1 Z∗

n
Z∗
n+1

Z∗
n+1+Zn

Zn+Z∗
n
e−jkLn+1



 ,

for a section of length Ln and with complex wave
impedance Zn.

• For a model having N sections, N − 1 scattering
matrices are multiplied,

[

p+1
p−1

]

= A1A2 . . .AN−1

[

p+N
p−N

]

,

to yield the model’s single final scattering matrix

P =
N−1
∏

n=1

An,

relating the bell input and output traveling pressure
waves.
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• The expression for the reflection function of the bell
may be formed by taking the ratio of the wave
reflected by the bell p−1 to the bell input wave p+1 ,

RB =
p−1
p+1

= λ2(ω)
p+NP2,1 + p−NP2,2

p+NP1,1 + p−NP1,2

= λ2(ω)
P2,1 +P2,2RL(ω)

P1,1 +P1,2RL(ω)
,

where the final expression is obtained by incorporating

an open end reflection at the termination of the N th

section by substituting p−N = p+NRL(ω), and by
commuting round-trip propagation losses λ2(ω).

• Similarly, the bell transmission is given by the ratio of
the wave radiated out the bell p+NTL(ω), where TLω)
is the open-end transmission function, to the bell’s
input p+1 ,

TB(ω) =
p+Nλ(ω)TL(ω)

p+1
=

λ(ω)TL(ω)

P1,1 +P1,2RL(ω)
. (4)
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Wall Losses

• In practical implementations of acoustic tubes using
digital waveguide synthesis, it is necessary to account
for the losses associated with viscous drag and
thermal conduction which take place primarily
within a thin boundary layer along the bore walls.

• Below is a waveguide model of a cylindrical tube with
commuted wall loss filters, λ(ω), a reflection filter
HR(ω) and a transmission filter HT (λ).

−1

λ(ω)

Z
−L

Z
−L

λ(ω)

HR(ω)

HT (ω)

• Though these losses are distributed over the length of
the tube, it is more efficient to lump these effects by
commuting a characteristic digital filter to each end
of the waveguide.
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Simple Wall Loss

• It is possible to account for attenuation due to wall
losses simply by multiplying delay line outputs by a
single coefficient β.

• For a tube of length L and radius a, with observation
points at the ends of the upper and lower delay lines,
the constant β has the following approximate value:

β ≈ 1− 2αL, α ≈ 2× 10−5ω
1
2/a,

where ω is the radian frequency. This approximation
is valid for tubes sufficiently short that β is near one.

• Since losses are frequency dependent however, this
approximation may not be satisfactory for all tubes
(large and small).
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Wall Loss and Pipe Radius

• The walls contribute a viscous drag dependent on
the ratio of the pipe radius a, given by the parameter
rv.

• Losses due to thermal conduction are also
dependent on the pipe radius and are given by the
parameter rt.

• The effects of the viscous and thermal losses lead to
an attenuation in the waves propagating down the
length of the pipe. The propagation constant is given
by

Γ(ω) = α(ω) + j
ω

v(ω)
,

where ω is the radian frequency and

α(ω) , the attenuation coefficient,

v(ω) , the phase velocity

• The attenuation coefficient α(ω) is a function of rv
and the phase velocity v(ω) is a function of rt. Both
therefore, are dependent on the tube radius.3

3See “A Simple, Accurate wall loss filter for acoustic tubes”, by Jonthan Abel and Tamara Smyth, DAFX

2003, for details.

Music 206: Modeling Tubes and Wind Instruments 26



Frequency Response

• The propagation constant Γ(ω) gives the per unit
length attenuation of waves propagating along an
infinitely long tube.

• The frequency response approximating the
attenuation and phase delay over a tube of length L
is given by

e−Γ(ω)L = e−α(ω)L−j(ω/v(ω))L.

• Removing a pure delay of duration L/c, we have the
desired wall loss filter frequency response λ(ω), given
by

λ(ω) = e−α(ω)L−j(ω/v(ω)−ω/c)L.

• The wall loss filter λ(ω) is seen to have a gentle
low-pass characteristic, which is more pronounced
with decreasing tube radius a or increasing tube
length L.

Music 206: Modeling Tubes and Wind Instruments 27



10
−1

10
0

10
1

−8

−7

−6

−5

−4

−3

−2

−1

0
Wall Attenuation Magnitudes for a 20cm Long Tube with Different Radii

Frequency (kHz)

G
ai

n 
(d

B
)

r = 0.1cm 

r = 0.2cm 

r = 0.3cm 

r = 0.4cm 

r = 0.5cm 

Figure 16: Wall loss filter magnitude for increasing radii.
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Figure 17: Wall loss filter magnitude for increasing lengths.
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Shelf Filter
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Figure 18: First-order shelf filter where H(ω) = 0 at ω = π and H(ω) = 1 at ω = 0. The
cutoff frequency is given by ωT and H(ωT ) is given by σT .

• The first-order shelf is characterized by

1. Unity gain at DC

2. A band edge gain gπ > 0

3. A gain
√
gπ at the transition frequency ft.
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First Order Shelf Filter Design

• The transfer function for the first-order shelf filter is
given by

σ(z; ft, gπ) =
b0 + b1z

−1

1 + a1z−1
.

• The coefficients are given by

b0 =
β0 + ρβ1
1 + ρα1

, b1 =
β1 + ρβ0
1 + ρα1

, a1 =
ρ + α1

1 + ρα1
,

where

β0 =
(1 + gπ) + (1− gπ)α1

2

β1 =
(1− gπ) + (1 + gπ)α1

2
,

and

α1 =







0, gπ = 1

η − sign(η)(η2 − 1)
1
2 , gπ 6= 1.

• To form the coefficients of a prototype shelf filter
with a transition frequency of π/2

η =
(gπ + 1)

(gπ − 1)
, gπ 6= 1.
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• The parameter

ρ =
sin(πft/2− π/4)

sin(πft/2 + π/4)

is the coefficient of the first-order allpass
transformation warping the prototype filter to the
proper transition frequency.

• An efficient way to model the frequency response is to
use a cascade of minimum-phase first-order shelf
filters σi(z),

λ̂(z) =
N
∏

i=1

σi(z; ft(i), gπ(i)).

• Unlike with other methods, the shelf filter coefficients
are easily computed in real time.

• Since the shelf filters are first order, they have real
poles and zeros, and are relatively free of artifacts
when made time varying.

• In designing the prototype filters for different orders it
was discovered that a cascade of shelf filters with
band-edge gains (in units of amplitude) and transition

Music 206: Modeling Tubes and Wind Instruments 31



frequencies (in radians/π) given by

gπ(i) = exp

{

[(i− 1
2)/N ]

1
2

∑N
k=1[(k − 1

2)/N ]
1
2

· ln |λ(2πfs/2)|
}

,

ft(i) = [(i− 1

2
)/N ]3,

has a transfer function which is an excellent
approximation to λ(ω) for a wide range of filter
orders N , tube lengths L, tube radii a, and sampling
rates fs.
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Figure 19: Computed and shelf filter cascade wall loss filter magnitude at various tube radii:
0.1 (lower) - 0.5 (upper) cm.
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Figure 20: Computed and shelf filter cascade wall loss filter magnitude at various tube
lengths: 5 (upper) - 25 (lower) cm.

Music 206: Modeling Tubes and Wind Instruments 33



Music 206: Modeling Tubes and Wind Instruments 34



Pressure Controlled Valves

• Many sounds are produced by coupling the
mechanical vibrations of a source to the resonance of
an acoustic tube:

• In vocal systems, air pressure from the lungs controls
the oscillation of a membrane (or vocal fold), creating
a variable constriction through which air flows.

• Similarly, blowing into the mouthpiece of a clarinet
will cause the reed to vibrate, narrowing and widening
the airflow aperture to the bore.

• Sound sources of this kind are referred to as
pressure-controlled valves and they have been
simulated in various ways to create musical synthesis
models of woodwind and brass instruments as well as
animal vocal systems.
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Classifying Pressure-Controlled Valves

• In physical modeling synthesis, the method used for
simulating the reed typically depends on whether an
additional upstream or downstream pressure causes
the corresponding side of the valve to open or close
further.

• The couplet (σ1, σ2) may be used describe the
upstream and downstream valve behaviour,
respectively, where a value of +1 indicates an opening
of the valve, and a value of -1 indicates a closing of
the value, in response to a pressure increase.
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Three simple configurations of PC valves
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Figure 21: Simplified models of three common configurations of pressure-controlled valves.

1. (−,+): the valve is blown closed (as in woodwind
instruments or reed-pipes of the pipe organ).

2. (+,−): the valve is blown open (as in the simple
lip-reed models for brass instruments, the human
larynx, harmonicas and harmoniums).

3. (+,+): the transverse (symmetric) model where the
Bernoulli pressure causes the valve to close
perpendicular to the direction of airflow.
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Mechanical Vibrations: Mass-spring
System

• The simplest oscillator is the mass-spring system
which consists of a horizontal spring fixed at one end
with a mass connected at the other end.

K

m

x

Figure 22: An ideal mass-spring system.

• The motion of an object can be describe in terms of
its

1. displacement x(t)

2. velocity v(t) = dx
dt

3. acceleration a(t) = dv
dt =

d2x
dt2
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Equation of Motion

• The force on an object may be determined using
Newton’s second law of motion F = ma.

• There is an elastic force restoring the mass to its
equilibrium position, given by Hooke’s law
F = −Kx, where K is a constant describing the
stiffness of the spring.

• Since Newton’s third law of motion states that “for
every action there is an equal and opposite reaction’,
these forces are equal, yielding

m
d2x

dt2
= −Kx −→ d2x

dt2
+ ω2

0x = 0,

where ω0 =
√

K/m.

• Recall that x = A cos(ω0t + φ) is a solution to this
equation.
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Damping

• Any real vibrating system tends to lose mechanical
energy as a result of friction and other loss
mechanisms.

• Damping of an oscillating system corresponds to a
loss of energy or equivalently, a decrease in the
amplitude of vibration.

m

x

K

Figure 23: A mass-spring-damper system.

• The drag force Fr is proportional to the velocity and
is given by

Fr = −Rv −→ Fr = −R
dx

dt

where R is the mechanical resistance.
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Damped Equation of Motion

• The equation of motion for the damped system is
obtained by adding the drag force into the equation of
motion:

m
d2x

dt2
+ R

dx

dt
+Kx = 0,

or alternatively

d2x

dt2
+ 2α

dx

dt
+ ω2

0x = 0,

where α = R/2m and ω2
0 = K/m.

• The damping in a system is often measured by the
quantity τ , which is the time for the amplitude to
decrease to 1/e:

τ =
1

α
=

2m

R
.

• When a simple oscillator is driven by an external force
F (t), the equation of motion becomes

m
d2x

dt2
+R

dx

dt
+Kx = F (t).
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Valve Displacement

S1

S2

S2

S3

S1

S3x
p2

U
p1

Figure 24: Geometry of a blown open pressure-controlled valve showing effective areas
S1, S2, S3.

• Consider the double reed in a blown open
configuration.

• Surface S1 sees an upstream pressure p1, surface S2

sees the downstream pressure p2 (after flow
separation), and surface S3 sees the flow at the
interior of the valve channel and the resulting
Bernoulli pressure.
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Valve Driving Force

• With these areas and the corresponding geometric
couplet defined, the motion of the valve opening x(t)
is governed by

m
d2x

dt2
+2mγ

dx

dt
+k(x−x0) = σ1p1(S1+S3)+σ2p2S2,

where γ is the damping coefficient, x0 the equilibrium
position of the valve opening in the absence of flow,
K the valve stiffness, and m the reed mass.

• The couplet therefore, is very useful when evaluating
the force driving a mode of the vibrating valve.
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How to Discretize?

• The one-sided Laplace transform of a signal x(t) is
defined by

X(s)
∆

= Ls{x} ∆

=

∫ ∞

0

x(t)e−stdt

where t is real and s = σ + jω is a complex variable.

• The differentiation theorem for Laplace transforms
states that

d

dt
x(t) ↔ sX(s)

where x(t) is any differentiable function that
approaches zero as t goes to infinity.

• The transfer function of an ideal differentiator is
H(s) = s, which can be viewed as the Laplace
transform of the operator d/dt.

• Taking the Laplace Transform of the valve
displacement, we have

ms2X(s) +mgsX(s) +KX(s)−Kx0 = F (s).
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Finite Difference

• The finite difference approximation (FDA) amounts to
replacing derivatives by finite differences, or

d

dt
x(t)

∆

= lim
δ→0

x(t)− x(t− δ)

δ
≈ x(nT )− x[(n− 1)T ]

T
.

• The z transform of the first-order difference operator
is (1− z−1)/T . Thus, in the frequency domain, the
finite-difference approximation may be performed by
making the substitution

s → 1− z−1

T

• The first-order difference is first-order error accurate
in T . Better performance can be obtained using the
bilinear transform, defined by the substitution

s −→ c

(

1− z−1

1 + z−1

)

where c =
2

T
.

Music 206: Modeling Tubes and Wind Instruments 45



Valve Transfer Function

• Using the Bilinear Transform, the transfer function
becomes

X(z)

F (z) + kx0
=

1 + 2z−1 + z−2

a0 + a1z−1 + a2z−2
,

where

a0 = mc2 +mgc + k,

a1 = −2(mc2 − k),

a2 = mc2 −mgc + k.

• The corresponding difference equation is

x(n) =
1

a0
[Fk(n) + 2Fk(n− 1) + Fk(n− 2))−

a1x(n− 1)− a2x(n− 2)],

where Fk(n) = F (n) + kx0.
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Volume Flow
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Figure 25: The clarinet Reed.

• The steady flow through a valve is determined based
on input pressure p1 and the resulting output pressure
p2.

• The difference between these two pressure is denoted
∆p and is related to volume flow via the stationary
Bernoulli equation

U = A

√

2∆p

ρ
,

where A is the cross section area of the air column
(and dependent on the opening x).
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Figure 26: The reed table.
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