Music 175: What is Sound?

Tamara Smyth, trsmyth@ucsd.edu
Department of Music,
University of California, San Diego (UCSD)

April 4, 2017
What is Sound?

If a tree falls in a forest and no one is there to hear it, does it make sound?

Figure 1: A mime in the forest.
Sound

- The word *sound* is used to describe both:
 1. an auditory sensation in the ear;
 2. the disturbance in a medium that causes an auditory sensation.
- Nearly all objects will vibrate when disturbed.
- Sound is the result of a *wave* created by vibrating objects, propagated through a medium from one location to another.
The Science of Sound

• **Acoustics** is the science that deals with the quantifiable measure of the *production, control, transmission* and *reception* of sound.

 – encompasses disciplines such as physics, engineering, psychology, audiology, speech, architecture, neuroscience, music and more!

• **Psychoacoustics** is the study of the way humans perceive sounds.

 – things are sometimes different than they sound or appear.

 – internal representation can be quite different from the physical stimulus on the ear (or the retina).

 – consider a visual example of two tables (on the next slide).
Two Tables

- Two tables are depicted as if in different orientations in space.

Figure 2: Two tables (from Cook, Chapt. 3).

- Stating they are tables is a cognitive interpretation:
 - patterns of lines are being interpreted as 3-D objects.
Removing Cognitive Interpretation

• Turning off the interpretation of “tables in space”, we (more clearly) see two parallelograms of identical size and shape.
What is a wave?

- A wave is a disturbance or oscillation that travels from one location to another over a period of time.

Waves carry information/energy from one point to another—the medium in which they propagate is not transported!

- There are two main types of waves:
 1. **Mechanical**: waves propagate through a *medium*.
 2. **Electromagnetic**: wave propagation does not require a medium (they can travel in a vacuum).

- Which kind of wave is sound?
Direction of particle displacement

• Depending on the direction of its oscillations, a mechanical wave can be:

1. **Longitudinal**: Particle displacement is parallel to the direction of wave propagation.

 [Diagram of longitudinal wave]

 Click image for animation: (Courtesy of Dr. Dan Russell, Kettering University)

2. **Transverse**: Particle displacement is perpendicular to the direction of wave propagation.

 [Diagram of transverse wave]

 Click image for animation: (Courtesy of Dr. Dan Russell, Kettering University)
Waveform

- The *waveform* of the sound shows the time evolution of the variations, illustrating:
 - **amplitude**: maximum particle displacement from rest position (Pa or N/m^2),
 - **period**: time to complete one cycle (s),
 - **frequency**: number of cycles per second (Hz),
 - **wavelength**: length of one complete cycle (m).

Figure 3: Sinewave.
Sound Waves

- Sound waves are **mechanical waves**:
 - a disturbance travelling through a *medium*
 - transports energy from one location to another
- Sound waves travel in solids, liquid, or gas.
- In fluids (liquid or gas), sound waves are longitudinal (compression) waves.
- **No material is transported as a result of mechanical waves.**
Speed of Sound

• What is the approximate speed of sound in
 1. air? approx. 340 m/s.
 2. water? approx. 1,484 m/s.
 3. vacuum?

• Speed of sound is dependent on medium’s
 1. density / compressibility (inversely related)
 2. stiffness (solids)
 3. temperature (fluids)

• Sound will travel faster in
 – solids than in liquids because solids are more difficult to compress;
 – liquids than gases because liquids are more difficult to compress.
Properties of Sound Waves

- **Speed of sound**
 - in air: 340 m/s
 - in water: 1480 m/s

- **Amplitude range of hearing (humans)**
 - Threshold of audibility: 0.00002 N/m²
 - Threshold of feeling (or pain!): 200 N/m²

- **Frequency range of hearing**
 - humans: 20 - 20 000 Hz
 - dogs: 20 - 45 000 Hz
 - beluga whale: 1000 - 123 000 Hz

- **Period of lowest and highest audible frequencies**
 - 1/20 Hz = 0.05 s 1/20 000 Hz = 0.05 ms

- **Shortest audible wave**
 - 340/20000=1.7cm

- **Longest audible wave**
 - 340/20=17m
Hot chocolate effect (Frank Crawford 1982)

- Check out the Allassonic Effect:
 - frequency heard from tapping the bottom of a cup of hot cocoa is a function of
 1. speed of sound;
 2. wavelength.
 - upon initial stirring of cacao, gas transported by the liquid reduces the speed of sound through the liquid, lowering the frequency.
 - as bubbles clear, sound travels faster in the liquid and the frequency increases.
 - try also by adding salt to cold beer.
Example of Sound Sources

• **Vibrating bodies**: drumhead, piano soundboard, ...

• **Changing airflow**:
 – vibrating vocal folds open and close changing rate of airflow from lungs to vocal tract;
 – holes in a rotating siren alternately periodically stop the flow of air;

• **Time-dependent heat sources**:
 – electrical spark producing a crackle;
 – explosion producing a bang due to rapid heating causing air to expand;
 – thunder results from rapid heating of air by a bolt of lighting.

• **Supersonic flow**: shock waves result when air flows faster than the speed of sound:
 – supersonic airplane,
 – speeding rifle bullet,
 – shock waves have been also known to occur in brass instruments (trumpet).
• Sound waves are mechanical longitudinal (compression) waves.
• A disturbance of a source (such as vibrating objects) creates an initial region of compression or high pressure.
• When the source vibrates, alternating regions of low and high pressure are produced in the surrounding air, called *rarefactions* and *compressions* respectively.
• The alternating pressure propagates through a medium, away from the source, before reaching our ears.