Music 175: Auditory Streaming

Tamara Smyth, trsmyth@ucsd.edu
Department of Music,
University of California, San Diego (UCSD)

May 21, 2019
Grouping into Streams

- Recall Gestalt principles of grouping: proximity, similarity, symmetry, continuity, and common fate.

- Principles of grouping enable parsing of streams of information.
 - If a sequence of tones is played with tones far enough apart in time, a melody can be tracked.
 - If the sequence is sped up, it becomes more difficult to track the transitions between large pitch leaps; you begin to hear tones in streams.

- The visual analog is *apparent motion*: objects tend to be conserved and the mind will construct whichever process is most probable.

![Figure 1: Dots alternating at sufficient speed can create apparent motion.](image)

- **Click to view**
Stream Segregation

Figure 2: Stream segregation in a cycle of six tones.

- Sequence consisting of 6 tones, 3 high and 3 low, is repeated slowly (left) then fast (right):
 - When played slowly, alterations of high and low tones can be heard.
 - When played fast, two melodic streams develop (see dashed lines, right), one high and one low.

- The ability to hear the order of the tones is also affected: half of subjects heard that a set of three high tones preceded a set of low ones, or vice-versa.

- Click to Listen
Streaming: loss of rhythmic information

Figure 3: Loss of rhythmic information as a result of stream segregation.

- When sped up, a triplet pattern is replaced by two isochronous rhythms (left).
- Intermediate silences are a result of actual silence ’S’ and gaps ’G’ created by tones being “removed from the stream”.
- The change also affects the perceived melody.
- Click to Listen
- Segregation is favored both by faster sequences and by larger separations between the frequencies.
Streaming: cumulative effects of repetition

Figure 4: Groups of tones consists of 2, 4, 8, 16 and then 32 cycles, separated by silence.

- The auditory system tends to wait and only gradually increase the tendency for streams to segregate.
- In this example, listen to how tendency towards segregation builds during the cycle, and then dissipates during silences.
- Click to Listen
Streaming: effect of spectral peak

Figure 5: Segregation based on spectral peaks.

- Two tones with the same fundamental but with different spectral peaks are used to show stream segregation.

- Click to Listen
Streaming: effect of connectedness

- A smooth continuous change helps the ear track a rapid frequency transition.
- Click to Listen
Applications

• Melodies tend to move in small steps.
 – In a sample of 3000 English folk songs, 68% of melodic transitions were no larger than one diatonic step
 – 91% were no larger than two diatonic steps.

• If steps are larger and more rapid, melody would segregate into separate streams.

• Example: Yodeling (alternating between head and chest voice): [Click to Listen]

• Bach Chaconne For Solo Violin (exerpt). [Click to Listen] (start 4:50).

• Example: fast complex rhythms in tabla playing [Click to Listen] (start 21:35)

• Steve Reich: Come Out: [Click to Listen]
Ambiguity

• In the image below, we see either two faces or a candlestick—not both at the same time.

![Reverse optical illusion](image)

Figure 7: Reverse optical illusion.

• Phantom words by Diana Deutsch (UCSD):
 – what word is heard and does it change? sound

• Mysterious Melody by Diana Deutsch (UCSD):
 – Can you identify a well-known melody with notes played in different octaves? scrambled / unscrambled
– This demonstrates use of previously acquired knowledge in perception.

– Visual example: an ambiguous image may be interpreted in a number of ways; (see here).

– Once told it is a dalmation, shapes of identifiable characteristics (ears, nose, tail etc.) begin to emerge to make it so.

– Audio example: shows importance of pitch (height) vs pitch class in melody.

- Two melodies may seem scrambled if not separated by some feature (pitch height or timbre).

Figure 8: Overlapped melodies may be separated with timbre or register (pitch height).
Shepard Tones

- Tones consist of a number of sinusoidal components, an octave apart, with a fixed spectral envelope that goes to zero at low and high frequencies.

![Shepard tone spectrum](image)

Figure 9: Shepard tone spectrum.

- When frequencies of the sinusoidal components are raised, we get the sense of an increase in pitch.

- Shepard tone:
 - sinusoidal components are raised repeatedly (or continuously) such that the pitch seems to rise;
– new low-amplitude components appear at the lowest frequency according to the sound’s fixed envelope;
– once 12 semitones is reached the tone is back to the beginning (yet having left the impression it is continually rising) showing the impact of common fate.

• The pitch appears to increase endlessly: (play auditory demo: “circularity in pitch judgement”).
Distorting Perspective

- Penrose Stairs: [Click to watch]

- Though impossible in three dimensions, the 2-d figure achieves this paradox by distorting perspective.

Figure 10: Escher lithograph.
Octave Ambiguity—Circularity in Pitch Judgement

- Tones have clear pitches, but ambiguous octaves—i.e., they are of the same pitch class.

- Ambiguous octave tones were used by Shepard and Risset to create illusions of endlessly ascending or descending pitches.

- Risset’s Continuous Scale:
 - Click to listen
 - Click to listen

- Example uses:
 - end of “I am the Walrus” (Beatles) Click to listen
 - The Batpod sound effect: Click to listen
Tritone Paradox

• Discovered by Diana Deutsch (UCSD) in 1986.

• **Click to Listen**
 – Example consists of four two-tone patterns.
 – Decide whether it is going up or down in pitch.
 – When listening in groups, some people hear a pattern as ascending, others descending.

• Two computer-produced tones, a tritone apart, are played in sequence: for some, that pattern has the illusion of ascending, while for others, it’s decending.

• Generally, when a melody is transposed, the perceived relationship between tones is unchanged.
 – In the Tritone Paradox, when one pair of notes is played (C followed by F#), a listener might hear a descending pattern.
 – Yet when a different pair is played (G# followed by D) the same listener hears an ascending pattern.