Grouping into Streams

- Recall Gestalt principles of grouping: proximity, similarity, good continuation, and common fate.
- Principles of grouping enable parsing of streams of information.
 - If a sequence of tones is played far enough apart in time, a melody can be tracked.
 - If the sequence is sped up, it becomes more difficult to track the transitions between large pitch leaps; you begin to hear tones in streams.
- The visual analog is apparent motion: objects tend to be conserved and the mind will constructs whichever process is most probable.

![Figure 1: Dots alternating at sufficient speed can create apparent motion.](Click to view)

Stream Segregation

- Sequence consisting of 6 tones, 3 high and 3 low, is repeated slowly (left) then fast (right):
 - When played slowly, alterations of high and low tones can be heard.
 - When played fast, two melodic streams develop (see dashed lines, right), one high and one low.
- The ability to hear the order of the tones is also affected: half of subjects heard that a set of three high tones preceded a set of low ones, or vice-versa.

![Figure 2: Stream segregation in a cycle of six tones.](Click to Listen)

Streaming: loss of rhythmic information

- When sped up, a triplet pattern is replaced by two isochronous rhythms (left).
- Intermediate silences are a result of actual silence 'S' and gaps 'G' created by tones being "removed from the stream".
- The change also affects the perceived melody.

![Figure 3: Loss of rhythmic information as a result of stream segregation.](Click to Listen)
Streaming: cumulative effects of repetition

Figure 4: Groups of tones consists of 2, 4, 8, 16 and then 32 cycles, separated by silence.

- The auditory system tends to wait and only gradually increase the tendency for streams to segregate.
- In this example, listend to how tendency towards segregation builds during the cycle, and then dissipates during silences.
 - [Click to Listen](#)

Streaming: effect of spectral peak

Figure 5: Segregation based on spectral peaks.

- Two tones with the same fundamental but with different spectral peaks are used to show stream segregation.
 - [Click to Listen](#)

Streaming: effect of connectedness

Figure 6: Segregation based on connectedness.

- A smooth continuous change helps the ear track a rapid frequency transition.
 - [Click to Listen](#)

Applications

- Melodies tend to move in small steps.
 - In a sample of 3000 English folk songs, 68% of melodic transitions were no large than one diatonic step
 - 91% were no larger than two diatonic steps.
- If steps are larger and more rapid, melody would segregate into separate streams.
- Example: Yodeling (alternating between head and chest voice): [Click to Listen](#)
- Bach Chaconne For Solo Violin (exerpt). [Click to Listen](#) (start 4:50).
- Example: fast complex rhythms in tabla playing [Click to Listen](#) (start 21:35)
Ambiguity

- In the image below, we see either two faces or a candlestick—not both at the same time.

![Figure 7: Reverse optical illusion.](image)

Shepard Tones

- Tones consist of a number of sinusoidal components, an octave apart, with a fixed spectral envelope that goes to zero at low and high frequencies.

![Figure 9: Shepard tone spectrum.](image)

- When frequencies of the sinusoidal components are raised, we get the sense of an increase in pitch.
- If sinusoidal components are raised repeatedly by a semitone, and their amplitudes adjusted according to a fixed envelope, once 12 semitones is reached we’ll be back where we started.
- The pitch appears to increase endlessly: [Click to listen](#)

Distorting Perspective

- Penrose Stairs: [Click to watch](#)
- Though impossible in three dimensions, the 2-d figure achieves this paradox by distorting perspective.

![Figure 10: Escher lithograph.](image)
Octave Ambiguity—Circularity in Pitch Judgement

• Tones have clear pitches, but ambiguous octaves—i.e., they are of the same pitch class.
• Ambiguous octave tones were used by Shepard and Risset to create illusions of endlessly ascending or descending pitches.
• Risset's Continuous Scale:
 – Click to listen
 – Click to listen
• Example uses:
 – end of "I am the Walrus" (Beatles) Click to listen
 – The Batpod sound effect: Click to listen

Tritone Paradox

• Discovered by Diana Deutsch (UCSD) in 1986.
• Click to Listen
 – Example consists of four two-tone patterns.
 – Decide whether it is going up or down in pitch.
 – When listening in groups, some people hear a pattern as ascending, others descending.
• Two computer-produced tones, a tritone apart, are played in sequence: for some, that pattern has the illusion of ascending, while for others, it's descending.
• Generally, when a melody is transposed, the perceived relationship between tones is unchanged.
 – In the Tritone Paradox, when one pair of notes is played (C followed by F#), a listener might hear a descending pattern.
 – Yet when a different pair is played (G# followed by D) the same listener hears an ascending pattern.