Poles and Zeros and the Unit Circle

Recall the amplitude response

$\displaystyle G(\omega) = \vert g\vert\frac{\vert e^{j\omega T}-q_1\vert\cdot\v...
...-p_1\vert\cdot\vert e^{j\omega T}-p_2\vert\cdots\vert e^{j\omega T}-p_N\vert}.
$

Figure 12: Measurement of amplitude response from a pole-zero diagram (a bi-quad section).
\begin{figure}\centerline{\scalebox{0.7}{%
\input{pz.pstex_t}}}\end{figure}

Thus the term $ e^{j\omega T} - q_i$ may be drawn as an arrow from the $ i$th zero to the point $ e^{j\omega T}$ on the unit circle, and $ e^{j\omega T} - p_i$ is an arrow from the $ i$th pole.

The amplitude response at frequency $ \omega$ is given by

$\displaystyle G(\omega) = \frac{d_1d_2}{d_3d_4}
$


``Mus 270a: Introduction to Digital Filters'' by Tamara Smyth, Department of Music, University of California, San Diego.
Download PDF version (filters.pdf)
Download compressed PostScript version (filters.ps.gz)
Download PDF `4 up' version (filters_4up.pdf)
Download compressed PostScript `4 up' version (filters_4up.ps.gz)

Copyright © 2019-02-25 by Tamara Smyth.
Please email errata, comments, and suggestions to Tamara Smyth<trsmyth@ucsd.edu>