Relating Amplitude Response to Poles and Zeros

The frequency response of the transfer function (factored form) is given by

$\displaystyle H(e^{j\omega t}) = g\frac{(1-q_1e^{-j\omega T})(1-q_2e^{-j\omega ...
...a T})}
{(1-p_1e^{-j\omega T})(1-p_2e^{-j\omega T})\cdots(1-p_Ne^{-j\omega T})}
$

Consider the amplitude response $ G(\omega) \triangleq \vert H(e^{j\omega
T})\vert$

$\displaystyle G(\omega)$ $\displaystyle =$ $\displaystyle \vert g\vert\frac{\vert 1-q_1e^{-j\omega T}\vert\cdot
\vert 1-q_2...
...T}\vert\cdot\vert 1-p_2e^{-j\omega T}\vert\cdots\vert 1-p_Ne^{-j\omega T}\vert}$  
  $\displaystyle =$ $\displaystyle \vert g\vert\frac{\vert e^{-jM\omega T}\vert\cdot
\vert e^{j\omeg...
...ega T}\vert\cdot\vert e^{j\omega T}-p_1\vert\cdots\vert e^{j\omega T}-p_N\vert}$  
  $\displaystyle =$ $\displaystyle \vert g\vert\frac{\vert e^{j\omega T}-q_1\vert\cdot\vert e^{j\ome...
...}-p_1\vert\cdot\vert e^{j\omega T}-p_2\vert\cdots\vert e^{j\omega T}-p_N\vert}.$  

\fbox{\parbox{5in}{The amplitude response is the product of the
difference between two complex numbers.}}


``Mus 270a: Introduction to Digital Filters'' by Tamara Smyth, Department of Music, University of California, San Diego.
Download PDF version (filters.pdf)
Download compressed PostScript version (filters.ps.gz)
Download PDF `4 up' version (filters_4up.pdf)
Download compressed PostScript `4 up' version (filters_4up.ps.gz)

Copyright © 2019-02-25 by Tamara Smyth.
Please email errata, comments, and suggestions to Tamara Smyth<trsmyth@ucsd.edu>