$ Z$ Transform Properties

Two (2) important properties of $ z$ transforms:

  1. The $ z$ transform $ \mathcal{Z}\{\cdot\}$ is a linear operator which means, by definition
    $\displaystyle \mathcal{Z}\{\alpha x_1(n)+\beta x_2(n) \}$ $\displaystyle =$ $\displaystyle \alpha\mathcal{Z}\{x_1(n)\} + \beta\mathcal{Z}\{x_2(n)\}$  
      $\displaystyle \triangleq$ $\displaystyle \alpha X_1(z) + \beta X_2(z).$  

  2. From the shift theorem for $ z$ transforms, the $ z$ transform of a signal delayed by $ M$ samples is given by

    $\displaystyle \mathcal{Z}\{x(n-M)\} = z^{-M}X(z).
$

Shift Theorem:
\fbox{\parbox{5.7in}{A \textbf{delay of $M$\ samples} in the
time domain corresponds to a \textbf{multiplication by $z^{-M}$} in
the frequency domain.}}


``Mus 270a: Introduction to Digital Filters'' by Tamara Smyth, Department of Music, University of California, San Diego.
Download PDF version (filters.pdf)
Download compressed PostScript version (filters.ps.gz)
Download PDF `4 up' version (filters_4up.pdf)
Download compressed PostScript `4 up' version (filters_4up.ps.gz)

Copyright © 2019-02-25 by Tamara Smyth.
Please email errata, comments, and suggestions to Tamara Smyth<trsmyth@ucsd.edu>