$ Z$ Transform of the Difference Equation

Given the general difference equation for LTI filters,

$\displaystyle y(n) = b_0x(n)$ $\displaystyle +$ $\displaystyle b_1x(n-1) + \cdots + b_Mx(n-m)$  
  $\displaystyle -$ $\displaystyle a_1y(n-1) - \cdots - a_Ny(n-N),$  

taking the $ z$ transform of both sides yields
$\displaystyle \mathcal{Z}\{y(\cdot)\}$ $\displaystyle =$ $\displaystyle \mathcal{Z}\{b_0x(n) + b_1x(n-1)
+ \cdots + b_Mx(n-m)$  
    $\displaystyle \qquad\qquad - a_1y(n-1) - \cdots - a_Ny(n-N)\}.$  

Apply the linearity property to obtain

$\displaystyle \mathcal{Z}\{y(\cdot)\}$ $\displaystyle =$ $\displaystyle b_0\mathcal{Z}\{x(n)\} +
b_1\mathcal{Z}\{x(n-1)\}$  
    $\displaystyle + \cdots + b_M\mathcal{Z}\{x(n-M)\}$  
    $\displaystyle -a_1\mathcal{Z}\{y(n-1)\}-\cdots-
a_N\mathcal{Z}\{x(n-N)\},$  

and the shift theorem to obtain
$\displaystyle Y(z)$ $\displaystyle =$ $\displaystyle b_0X(z)+ b_1z^{-1}X(z)+ \cdots + b_Mz^{-M}X(z)$  
    $\displaystyle \qquad\qquad-a_1z^{-1}Y(z)-\cdots-a_Nz^{-N}Y(z).$  


``Mus 270a: Introduction to Digital Filters'' by Tamara Smyth, Department of Music, University of California, San Diego.
Download PDF version (filters.pdf)
Download compressed PostScript version (filters.ps.gz)
Download PDF `4 up' version (filters_4up.pdf)
Download compressed PostScript `4 up' version (filters_4up.ps.gz)

Copyright © 2019-02-25 by Tamara Smyth.
Please email errata, comments, and suggestions to Tamara Smyth<trsmyth@ucsd.edu>